
Living Systems® Process Suite

GO-BPMN Modeling Language

Living Systems Process Suite Documentation

3.1
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 GO-BPMN Modeling Language 1

2 Encapsulation 3

2.1 Context . 3

2.1.1 Visibility . 3

2.1.2 Namespaces . 4

2.1.3 Metadata . 4

2.1.4 Variables . 4

2.1.5 Module . 5

2.1.5.1 Module Import . 5

3 Model 7

3.1 Suspend . 7

3.2 Finish . 8

4 Process Model 9

4.1 Goal Processes . 10

4.2 BPMN Processes . 10

4.3 Reusable Processes . 11

4.4 Process Modeling . 11

4.4.1 Assignments . 11

4.4.2 Monitoring an Element . 12

4.4.3 Signal . 12

4.4.4 Errors . 12

4.4.5 Escalation . 14

iv CONTENTS

4.4.6 Plan and BPMN Modeling Elements . 16

4.4.6.1 Plan Model . 16

4.4.6.2 BPMN Model . 17

4.4.6.3 Events . 18

4.4.6.4 Flows . 32

4.4.6.5 Activities . 33

4.4.6.6 Gateway . 39

4.4.6.7 Swimlanes . 40

4.4.7 Goal Model . 42

4.4.7.1 Achieve Goal . 43

4.4.7.2 Decomposition . 44

4.4.7.3 Maintain Goal . 45

4.4.7.4 Plan . 47

4.4.7.5 Goal Activation and Deactivation . 48

5 Data Type Model 51

5.1 Records . 51

5.2 Record Fields . 52

5.3 Record Inheritance . 52

5.4 Record Import . 53

5.5 Data Relationships . 53

5.5.1 Deleting Record Instances in a Data Relationship . 55

5.6 Shared Records . 56

5.7 Enumerations . 57

6 Organization Model 59

6.1 Organization Roles . 59

6.2 Organization Unit . 60

6.3 Decomposition in Organization Models . 61

6.4 Resolving Roles and Units to Persons . 62

6.5 Organization Element Import . 64

7 Diagrams 65

7.1 Goal Diagram . 65

7.2 Plan Diagram . 65

7.3 Process Diagram . 66

7.4 Organization Diagram . 66

7.5 Data Type Diagram . 66

7.6 Diagram Elements . 66

7.6.1 Diagram Frames . 66

7.6.2 Hyperlinks . 67

7.6.3 Text Annotations . 67

7.6.4 Associations . 67

Chapter 1

GO-BPMN Modeling Language

The Goal-Oriented Business Process Modeling Notation is a visual modeling language used to design business
models. It extends the BPMN specified by OMG and enables you to apply either a goal-driven approach or the
classical BPMN approach in model design.

GO-BPMN Modeling Language as a conservative GO-BPMN extension and provides elements and mechanism for
goal-oriented business modeling. The goal-extension of the language enables you to create models that separate
the goal (WHAT you wish to achieve) from the way it is achieved (HOW to achieve it). The goals are defined by Goal
elements and the ways they can be achieve by Plans.

Additionally, GO-BPMN defines elements for organizational models and data structures, which are not covered by
the BPMN specification.

2 GO-BPMN Modeling Language

Chapter 2

Encapsulation

Encapsulation is a mechanisms for hiding content so as to present them as a single relatively self-contained con-
tainer for other elements: In a model, all data is encapsulated in a Module–the highest level encapsulation construct.
A module contains a plethora of elements, including Processes, which encapsulate BPMN or GO-BPMN flows; these
can include Sub-Processes, which encapsulate BPMN flows, etc.

2.1 Context

A context is a set of runtime data based on a namespace. It is created when the element that represents a
namespace is instantiated and holds values of variables, execution statuses of elements, etc.

Every namespace has its own unique context in runtime or possibly multiple contexts, that is, a model instance has
its context, a process instance has its own context, a plan has its own context, and every instance of a multi-instance
sub-process takes place in its own context: Hierarchy of the contexts reflects the hierarchy of namespaces.

Lower contexts have access to higher contexts.

Since a context holds all runtime data, it secures the persistence of execution data and status: In case of execution
interruption, the stored context can be used to restore the execution status.

2.1.1 Visibility

Generally, a context can access and see elements of its parent context, but not vice versa; for example, a process
cannot see the context of its sub-process.

Visibility of an element determines the rules of its accessibility from within or out of their context. It may be public
or private. A private element can be referred to only by the elements of its own context. In addition, Record
Fields can be also protected: they are accessible only from within its data type hierarchy.

4 Encapsulation

2.1.2 Namespaces

Some elements that represent encapsulation constructs, such as, modules, process, etc. are also namespaces.
Namespace construct must have a name. Within a namespace container, the elements with a semantic value must
have unique names.

Though element names are often optional, in a single namespace, modeling elements must have unique names, if
these are specified.

The namespaces constitute a hierarchy: top is the Module namespace, then the Process namespace, for goal
processes Plan namespace and then Sub-Process namespaces. On runtime each namespace typically results in
one context or multiple contexts. For example, one module context, multiple contexts for looping Sub-Process.

In GO-BPMN, the following elements represent namespaces:

• Modules

An element in another module is referenced using the name path in the form ::. This happens if the target
element is in an imported module.

• Processes

A Process instance cannot access elements in another process instance.

• Plans

A Plan instance cannot access elements in another Plan instance.

• Sub-Processes

A Sub-Process instance cannot access elements in another Sub-Process instance.

2.1.3 Metadata

Metadata are data pairs comprising a data key (name) and a data value, which provide additional data about a
modeling element.

Metadata can be defined for any modeling element (element with execution semantics) with the exception of Mod-
ules. As providing background information, metadata are local to their owners and may contain exclusively con-
stants.

2.1.4 Variables

Encapsulation elements with context can define variables, that will hold a value of a type on runtime, for these
contexts; on runtime, such a variable is instantiated as part of the context: On context initialization, variables are
assigned their initial value. Variables can use other variables of their own context or their parent contexts for their
initialization.

Depending on the immediate parent context of a variable, we distinguish global variables defined in modules, and
variables defined in processes, plans, and sub-processes.

A variable has the following properties:

• Type: data type of the value the variable can hold on runtime

• Initial value: value assigned to the variable when its context is created

• Visibility: access rules to the variable

If true, the Module can become a Model instance.

• Monitoring: property defining if the variable is used for monitoring purposes

Every variable must define its name and data type of the value it can hold.

Note: In expressions, you can define local variables. The scope of these variables is the
expression or the expression block.

../expression-lang/variables.html

2.1 Context 5

2.1.5 Module

A Module serves as a container for model resources, such as, BPMN processes, organization hierarchies, etc. It
can include other Modules, called Module imports. As such it resembles a jar file with dependencies.

On runtime, a module can act as a model and be executed.

It represents a namespace; hence to reference its elements from another module, you need to include the module
name in the element call, for example, myModule::myVariable.

A module defines the following properties:

• Version: version of the Module

• Executable: Boolean Attributes

If true, the Module can become a Model instance. Note that if you import an executable module to another
executable module, and you instantiate the importing module (the parent), the imported executable module
will be instantiated as part of the model instance.

• Module Imports: imported Modules

• Terminate condition: Boolean condition defining if a module can be instantiated

The condition is checked for the first time after the first transaction (module instance is created, process
instances are created, process' start events fire). After that it is checked constantly during the entire life of a
module instance. When evaluated to true, the Module instance is terminated.

Note: Terminate conditions of imported Modules are not evaluated.

2.1.5.1 Module Import

A Module import allows you to reuse existing modules: it is include of a Module similar to dependencies of jar files:
it allows a parent Module to use the resource of its Module imports, which are read-only includes of their Modules.

A Module can import one or several Modules, however, you can import a particular Module only once. Modules
cannot be imported recursively (if moduleA imports moduleB, then moduleB cannot import moduleA).

Note: To refer to the elements in Module imports from the importing module, you need to explicitly
define the namespace of the referred Module; for example, myModule::myVariable.

6 Encapsulation

Chapter 3

Model

A model is an inclusion of an executable Module and its Module Imports. It is not explicitly represented by any
component: any executable module with all its resources and module imports represents a model.

While you can upload any Module to the server, you create Models only over Modules that are executable. An
executable module serves as a static basis for creation of an arbitrary number of model instances: An model
instance uses the model with its static data as a blueprint, while the instance holds its runtime data, such as, what
element is currently being executed, what are statuses of the elements, values of variables, etc.

If a module imports other modules, whether the imported module is executable or not has no impact on execution.

During its lifetime a Model instance goes through a set of execution statuses:

• Created: Model context is created and contexts of individual module instances are created.

• Running: Context data are initialized, initial values are assigned, and all BPMN-based and Goal-based
Processes in all executable modules are instantiated.

Note that this happens in a bottom-up manner: First the modules that are "lowest" in the hierarchy are
initialized: If module A imports module B and module B imports module C, then C is initialized first, then B
and only then A: this allows you to use data from C and B in A, but not vice versa.

A Running Model instance can be suspended: all its Process instances and their elements are suspended
and no execution is taking place.

Note: If a Model instance attempts to perform an invalid action immediately when it becomes
Running and an error occurs, the initialization is rolled back and the Model instance goes back to
the Created status.

• Finished: Model instance becomes Finished, when all its Process instances are Finished.

You can finish a model manually if required.

3.1 Suspend

A Running model instance can be suspended: on suspend, its execution is paused immediately so that no changes
on runtime data can take place. Execution of all running elements is interrupted and all elements become Sus-
pended. A suspended model instance is read-only.

A Suspended Model instance may be resumed. When resumed the execution of the Model instance continues from
the point when it was suspended. It becomes Running and all asynchronous inputs received by the Model instance
while suspended (Signals, elapsing of time periods of Timer Events) are received and processed.

8 Model

Note: If a Timer Event, either a Timer Start Event or a Timer Intermediate Event with a duration is
suspended while Running, the duration is checked with regards to the time, when the Model instance
was suspended. For example, a Timer Event with a duration of 60 minutes was triggered at 1 p.m.:
if the Model instance is resumed at 1.30 p.m., the Timer Event continues running until 2 p.m.; if the
Model instance is resumed at 3.00 p.m., the Timer Event is finished and the outgoing Flow is taken
immediately. For cyclic events, only the last occurrence of the event is processed: For example, if a
BPMN-based Process is to be instantiated every day at 12 p.m. and the model instance is resumed
after three days at 1 p.m., only one process instance is triggered.

3.2 Finish

When a model instance receives a request to finish, the following happens:

• Active activities (Tasks and Sub-Processes) fail and become terminated immediately.

• Processes become finished:

– In Goal Processes, all Achieve Goals become deactivated immediately while Maintain Goals finish their
current cycle and then become deactivated.

– In BPMN Processes, all active Activities its BPMN-based Process instances are terminated (fail).

• All alive to-dos become interrupted so they cannot be submitted.

• As a result, the model becomes finished since all process instances are finished.

Chapter 4

Process Model

A Process Model is the set of processes within a model. Process is a container element for you Goal or BPMN
process workflow. They are always part of a Module, with one Module containing an arbitrary number of Processes.
Just like a Module, a Process represents a namespace which, on runtime, results in a local process context, a
Process instance. A Process can contain other elements that represent further nested namespaces and result in
further local contexts in the Process instance context, such as, Sub-Process contexts.

There are two types of Processes:

• Goal-based which makes use of the Goal extension of GO-BPMN

• BPMN-based defined as pure BPMN Processes.

When a process instance is to be created, the server checks if the Process is executable: if the Process is not
executable, no instance is created. If it is executable, instantiation takes place:

1. Process instance based on the Process is created.

2. Process namespace instance is created.

3. The Process instance becomes Running.

Note: What happens when the process instance becomes running depends on whether it is a
BPMN Processes and Goal Processes.

4. On execution finish, the Process instance becomes Finished.

When a Model is instantiated it attempts to create instances of all its processes including any processes in its Module
imports: for each Process it checks first whether the process is executable as stated above and then whether it can
be instantiated automatically.

Processes can be reflected as Records: this allows you to create instances of Processes by instantiating them as
Record instances; for example, you can send the name of the Process as a parameter to the Execute Task and
instantiate it in the Execute Task from another Process; for further information, refer to the Standard Library
documentation.

Process Attributes

• Executable is a Boolean attribute set by default to true so that the Process can be instantiated

If false, the process is cannot be instantiated: as a result, if a Model instance is triggering processes on start
automatically or with another mechanism later (such as, signals), the process is not instantiated.

• Visibility defines the access rules to the Process.

• Create activity reflection type creates a Record that reflects the Process.

../stdlib/re_modulecore_tasks.html
../stdlib/re_modulecore_tasks.html

10 Process Model

4.1 Goal Processes

A Goal-based Process is a Process with a Goal model.

On execution, after the parent model instance becomes Running, one process instance based on the process is
created.

When instantiated, the following takes place:

1. Context data are created and initialized (initial values are assigned).

2. All top Goals are triggered (become Ready and, if their conditions are fulfilled, immediately Running) and the
Process instance becomes Running.

3. When no Achieve Goal is Active (Ready or Running) and no Plan is running, the Goal-based Process instance
becomes Finished.

4.2 BPMN Processes

A BPMN-based process encapsulates a BPMN-based process model.

It is instantiated when the parent model instance is instantiated, possibly multiple times by different start events.

Note: A BPMN-based Process may be used as a Reusable Process and be instantiated as a sub-
process instances.

When a BPMN-based process is being instantiated, the following happens:

1. Context data are created and initialized (initial values are assigned).

2. The process instance becomes Running and its Start Event, and Activities without incoming Flow are trig-
gered and produce tokens. The token is passed to their outgoing flow: the token marks the currently executed
step.

3. When no process element is active (there is no token in the workflow), the Process instance becomes Fin-
ished.

A BPMN-based Process defines the following specific properties:

• Instantiate automatically: Boolean attribute defining if the process creates its instance when requested (if
false, the Process can be triggered only as a Reusable Sub-Process)

• Parameters: an arbitrary number of parameters with a parameter name and type (when called as a Reusable
Sub-Process, the parameter value is added)

4.3 Reusable Processes 11

4.3 Reusable Processes

A Reusable Process is an application of a BPMN-based Process when the Process is called by a Reusable Sub-←↩

Process activity (Reusable Sub-Processes). One Reusable Process can be called by an arbitrary number of Sub-
Process activities, thus providing a convenient mechanism for reuse of workflows.

Any BPMN-based Process can be used as a Reusable Process provided it meets the following criteria:

• It starts with a None Start Event, that is, no other Start Events are triggered.

• It is public.

If a BPMN-based Process is used only as a Reusable Sub-Process it can define an arbitrary number parameters
as the process properties. Note that the properties can be defined as required.

Note: In Living Systems® Process Design Suite, a Reusable Process must be marked as executable.
Also, consider disabling the Instantiate Automatically on the Process so that it is not instantiated when
the parent Module is instantiated.

Reusable Processes can have the Parameter name property.

Process Modeling

4.4 Process Modeling

A process contains workflows consisting of modeling elements with execution semantics, which define how it is
executed; this includes processes themselves, goals and plans, process body elements with semantics, such as,
gateways, intermediate events, start events, activities, etc.

Every modeling element has at least the following properties:

• Name: optional identifier of an element in its namespace

• Description: free-text description

• Assignments and Monitoring: set of expressions executed at a certain point of the element's life

4.4.1 Assignments

Assignments serve to define expressions that are executed when a particular element enters a particular life cycle
status. The mechanism is available on modeling elements with execution semantics within a Process and on
Processes themselves. Typically, an assignment defines an expression that assigns a value to a slot, such as a
variable.

You can define an assignment for the following:

• Flows, Start Events, End Events, Exclusive Gateways:

Assignment is performed when events are executed (token passes through the element).

• Intermediate events, Activities, and Parallel Gateway:

The elements can define the following assignments:

– Start assignment is performed when the token enters the element.

– End assignment is performed always when a token leaves the element or is removed from the element,
for example, due to failure, termination, or restart.

– Accomplish assignment is performed when a token when the flow element finishes "successfully" and
the token leaves using the outgoing flow. The Accomplish assignment is performed always before the
End assignment.

• Goals and Plans can define assignment for individual life-cycle statuses.

12 Process Model

4.4.2 Monitoring an Element

To define monitoring related activities, modeling elements can define

• monitoring assignments: a special type of Assignment intended to implement the monitoring logic Monitoring
assignments are available on modeling elements with execution semantics within a Process and on Processes
themselves (it is identical to the Assignment mechanism).

• monitoring flags: available on variables and on Records If flagged as monitoring, the elements are displayed
with a monitoring icon to indicate that the entity is involved in monitoring. The flag does not impose any
semantics by itself.

4.4.3 Signal

A signal is a means of communication within a model instance or with another model instances.

It is produced by Throw Signal Events and processed by Signal Start Events and Catch Signal Events of the target
model instances:

• All Signal Start Events in the target model instances

• All Catch Signal Events in the target model instances that are waiting for the signal, that is, they hold a token
at that moment

Alternatively, you can create a Signal object explicitly.

Signal object cannot be or recursively contain a reference, closure, Goal, Plan, or Process instance.

4.4.4 Errors

An Error represents a critical problem in execution of your process, which should cause the execution to stop
immediately unless explicitly handled and corrected.

An error can be thrown by an Activity or an Error End Event.

Note: Additionally, you can throw an error also with the error() function of the Standard Library or
from your custom implementations as com.whitestein.lsps.common.ErrorException.

Once generated, the error is gradually propagated through its the immediate context and looking for an element,
which could consume it. If the error is not consumed in the immediate context, it is gradually propagated throughout
higher contexts. If not consumed within its process instance, an exception is thrown and the last transaction which
caused the error is rolled back. Note that the last transaction, refers to the last EJB transaction of the
model instance.

An error can be caught and consumed by a Error Intermediate Event or by Plans.

../sdk/mainconcepts.html#transactioninmodelinstances
../sdk/mainconcepts.html#transactioninmodelinstances

4.4 Process Modeling 13

14 Process Model

4.4.5 Escalation

The Escalation mechanism resembles the signal mechanism; however, while signals can be consumed by multiple
elements in the model instance, an escalation signal is consumed by a single element within its model instance.

Similarly to signals, to perform escalation, you need to create an escalation object with the Throw Escalation Event
or Escalation End Event positioned at the appropriate location in your workflow. When the workflow enters a Throw
Escalation Event or Escalation End Event event, the event produces an Escalation object, which is then propagated
through its own context and then through parent contexts and "up" to higher contexts until caught by an Escalation
Start Event or Catch Escalation Intermediate Event or until no higher context exists. Once caught by an Escalation
Start Event or Catch Escalation Intermediate Event, the Escalation object is not propagated further. If there are
multiple Escalation Catch elements in the same context, only one of the elements consumes the Escalation signal
and only the catch event that consumes the escalation object produces a token.

The object must define its escalation code, a string that serves as its identifier: the code can be then used by filters
of the Escalation Catch Events to filter the objects.

4.4 Process Modeling 15

Figure 4.1 Demonstration of escalation with an Escalation produced in a subprocess and caught be a
Catch Escalation Event

16 Process Model

Figure 4.2 Process that terminates in an Escalation End Event which triggers the Escalation Start Event of
its Inline Event Subprocess

Plan and BPMN Modeling Elements Goal Model

4.4.6 Plan and BPMN Modeling Elements

The Plan and BPMN-based processes use a similar set of modeling element in their workflows with some additional
modeling element available for the BPMN-based process workflows so that you can model logic that is accommo-
dated by Goal hierarchies:

• In a Plan, the workflow is triggered by the Plan.

• In a BPMN-Process, the workflow is triggered by the Process.

4.4.6.1 Plan Model

A Plan Model is a sum of all elements with execution semantics encapsulated in a Plan.

Every Plan Model:

• must contain one None Start Event, which is triggered, when the parent Plan becomes Running;

4.4 Process Modeling 17

• must contain at least one End Event or an Activity with no outgoing flow;

Apart form that, it can contain an arbitrary number of activities, events, flows, and gateways connected with Se-
quence Flows (Connectors). The elements in the flows must meet their modeling rules and must create an uninter-
rupted workflow.

A Plan Model is triggered when the parent Plan becomes Running and its None Start Event produces a token and
the respective namespace context is initiated.

4.4.6.2 BPMN Model

A BPMN Process Model is a sum of all elements with execution semantics encapsulated within a BPMN-based
Process.

A BPMN-based Process:

• must contain at least one Start Event (it may contain several Start Events);

• must contain at least one End Events or an Activity with no outgoing flow;

Apart form that, it can contain an arbitrary number of activities, events, and gateways connected with sequence
flows. The elements in the flows must create an uninterrupted workflow and meet any other modeling rules that
apply.

4.4.6.2.1 Instantiation of Plans and BPMN Processes

When a Process with a None Start Event is instantiated:

1. Process namespace is created.

2. Local process context is initialized.

3. Process instance becomes Running and one Start Event produces token).

4. If there are no activity in the workflow (no more tokens in workflows), the Process instance is terminated and
becomes Finished.

When a Process with another type of Start Event is instantiated:

1. Process namespace is created.

2. The respective Start Event condition is checked.

3. If the Start Event conditions are fulfilled, the local process contexts are initialized.

4. The Start Event triggers execution (releases the token) and the process instances becomes Running.

5. If there is no more activity in the workflow (no more tokens in workflows), the Process instance is terminated
and becomes Finished.

Note: If a BPMN-based Process instance ends with an uncaught Error End Event, the last transaction
is rolled back.

Events Flows Activities Gateway Swimlanes

18 Process Model

4.4.6.3 Events

An Event is any element in a BPMN-based Process or Plan model that triggers or terminates the workflow, thus
modifying the execution pace or causing a flow change.

Based on the position and function in the workflow, the following types events are available:

• Start Events trigger workflow execution by creating contexts and producing tokens.

• Intermediate Events delay processes based on events or handle an event produced in an activity if used as a
boundary element.

• End Events consume the incoming token.

4.4.6.3.1 Start Events

A Start Event indicates where a particular workflow starts. When triggered, it creates the context for the element it
is in, that is a process, plan, or subprocess, and, in this context, produces a token, which leaves through its outgoing
flow.

A Start Event has no incoming flow and only one outgoing Normal Flow.

In Plans of Goal-based Processes and Sub-Processes, its None Start Event is triggered when the Plan becomes
running. A Plan can contain only a None Start Event.

While a model instance is running, any Start Events in its BPMN-based Process create a Process instance when
their trigger occurs: if there is a Condition Start Event and its condition is true, the event is triggered when the model
instance starts and whenever the condition becomes false and true again as long as the model instance is running.

Start Events with triggers are allowed in BPMN-based processes and inline event sub-processes:

• In a BPMN-based process: Start Events whose triggers occurred, are triggered when the model instance is
created. Each Start Event creates its Process instance in the Model instance. If the trigger occurs again while
the process instance is running, the respective Start Event creates a new Process instance.

• In an [inline event sub-process], if the trigger occurs at any time while the parent process instance or sub-
process instance is running, the events are triggered: they create an instance of their sub-process and
produce a token. Note that the inline event subprocess can be also a reusable sub-process so the Start
Events can be in the referenced Process.

4.4.6.3.1.1 None Start Events

A None Start Event is triggered when its parent context is created. It does the following depending on its location:

• When in a BPMN-based Process, it creates the context of the process instance and produces a token when
the model instance becomes running;

• When in a Sub-Process: it creates the context of the subprocess and produces a token when the sub-Process
is triggered, that is, it receives a token via its incoming flow or, if the sub-process does not have an incoming
flow, at the moment it is triggered.

• Plan, once the Plan becomes running, the None Start Event of the Plan Model is triggered.

Figure 4.3 None Start Event

4.4 Process Modeling 19

4.4.6.3.1.2 Conditional Start Events

A Conditional Start Event defines a boolean condition expression as its trigger and starts a BPMN-based Process
or an inline-event subprocess:

• When in a BPMN-based Process, the event creates and triggers an instance of the process:

– when its condition is true at model instantiation

– when the condition, previously evaluated to false, becomes true while process instance is running.

• When in an inline-event subprocess, the event creates and triggers an instance of the sub-process

– when its condition is true at process instantiation

– when the condition, previously evaluated to false, becomes true while process instance is running.

Note that the condition cannot reference local context since the context does not exist at the moment when it is
evaluated.

Figure 4.4 Conditional Start Event

Conditional Start Event Attributes

• Condition evaluated when the event is triggered. If true, the event produces a token.

4.4.6.3.1.3 Signal Start Events

A Signal Start Event creates the context of a BPMN-based Process or an inline-event subprocess and produces a
token when it receives a Signal that passes through the Filter.

Figure 4.5 Signal Start Event

• Filter: filter for the expected Signal object

• Signal: reference where to store the received signal value

20 Process Model

4.4.6.3.1.4 Timer Start Events

A Timer Start Event defines a timer trigger. It starts a BPMN-based Process or an inline event subprocess:

• When in a BPMN-based Process, the event creates and triggers an instance of the process when the point
in time define by its Timer trigger occurs or periodically always when the specified time period elapses while
the parent model instance is running.

• When in an inline-event subprocess, the event creates and triggers an instance of the sub-process when the
point in time define by its Timer trigger occurs or periodically always when the specified time period elapses
while the parent process instance is running.

If the specified point in time has already occurred, the event is triggered immediately when the parent context is
instantiated. If both the Date and the Period property are defined, the start event is triggered periodically with the
period countdown starting from the Date value. If the duration is null or negative, the start event is executed only
once.

Timer Start Event Notation

Figure 4.6 Timer Start Event

Timer Start Event Attributes

• Date: date when the event triggers execution, that is, produces a token

• Period: periodicity of process instance triggering

4.4.6.3.1.5 Escalation Start Events

An Escalation Start Event creates the context of an inline event subprocess and produces a token when it receives
an Escalation object while its parent instance is running (parent can be either a process instance or a sub-process
instance if the sub-process is nested in another sub-process).

In other than an Inline Event Sub-Process, the event is ignored.

Figure 4.7 Escalation Start Event

Escalation Start Event Attributes

• Filter defines the escalation codes of accepted Escalation objects. If the object does not have any of the
defined codes, it is ignored. If no codes are defined, any Escalation object triggers the event.

• Escalation is the reference to a local or global context (for example, a variable or a variable field) that will
store the received Escalation object.

• Escalation code reference: Event consumes only escalations with the defined escalation code (if the esca-
lation code is not specified then the Event accepts all escalations).

4.4 Process Modeling 21

4.4.6.3.1.6 Error Start Events

An Error Start Event triggers its flow when it receives an Error object. You can use it only as a start event of an
Inline Event Sub-Process: When the parent of the sub-process throws an error and the error code matches a code
in the Error Code Filter of the Error Start Event, the event creates the context of the inline event sub-process and
produces a token.

The parent can be either a process instance or a sub-process instance if that the sub-process is nested in another
sub-process.

In other than an Inline Event Sub-Process, the event is ignored.

Figure 4.8 Error Start Event

Error Start Event Attributes

• Error Code Filter defines the filter that returns the expected errors (only error events from the Error reference
that meet the filter criterion trigger the start event).

• Error Code is the reference to a local or global context (variable or a variable field) that will store the received
error.

22 Process Model

4.4.6.3.2 Intermediate Events

An intermediate event process element handles a predictable event that can occur during workflow execution, such
as, an error, timeout, breached condition, etc. When such event occurs, the event produces a token, which takes
the outgoing flow of the event.

The scope the events listen to is defined by where they are placed:

• on the boundary of an Activity: If the activity is Alive and the event occurs, the outgoing flow of the Inter-
mediate Event is taken.

Note: If a boundary event is attached to a multi-instance Activity, all the instances of the Activity
are interrupted when the Event is triggered.

When the Intermediate Event on an activity is triggered, the activity can either continue or terminate. This
depends on the interruptibility property of the Intermediate Event:

– If the event is interrupting, the activity is deactivated when the event is triggered.

– If the event is non-interrupting, the activity continues its execution: note that if the event occurs again
while the Activity is alive, the boundary event is triggered again.

• flow object with one incoming and one outgoing flow: the event is triggered when the flow reaches the
event. Once the event occurs, the execution continues via the outgoing flow of the Intermediate Event.

4.4 Process Modeling 23

• flow object with no incoming and one outgoing flow: the event is triggered whenever the event condition
occurs while its context is running.

4.4.6.3.2.1 Timer Intermediate Events

A Timer Intermediate Event either temporarily delays a workflow or triggers a workflow at a moment in time:

• If placed in a workflow as a flow object with one incoming and one outgoing Flow, the event pauses the
workflow execution for the defined time period or until the defined point in time has occurred.

24 Process Model

Note: The target element of a Sequence Flow leaving a Gateway must not be a Timer Intermediate
Event.

• If placed on an Activity border, as soon as the Activity becomes active, the countdown of the time period is
triggered (or the event is waiting for the point in time to occur).

When the time elapses and the Activity is still active, the timer event triggers its outgoing flow. If the Activity
finishes before the time elapses, the event is not used (Flow leaving the Activity is taken).

There can be several Timer Intermediate Events on one Activity: whichever happens first is used. Similarly,
also if an event defines both the duration and the date whichever happens first is used.

The event must define its time event either as a time duration—for example, 24 hours—or as a point in time, for
example, a date: 2022-2-2) in one of its properties:

• Date: date when the event triggers execution, that is, produces a token

• Duration: periodicity with which the event triggers execution, that is, produces a token

Figure 4.9 Non-Interrupting Timer Intermediate Event

Figure 4.10 Interrupting Timer Intermediate Event

4.4.6.3.2.2 Error Intermediate Events

An Error Intermediate Event serves to define a workflow that is taken after an Activity produces an error: it explicitly
produces an error or it ends with an Error End Event.

The element is placed on boundaries of Activities, that is, Tasks or Sub-Process. An Activity can have multiple Error
Intermediate Events attached to its boundary.

An Error Intermediate Event can define a set of errors it may consume. The errors are identified by their error code.
Once the event catches one of the error codes, its outgoing Flow is taken. If no error code is specified (null),
the Error Intermediate Event catches any Error produced in its child contexts unless it is processed by other Error
Intermediate Event, which explicitly specifies the error code.

If there are several Error Intermediate Events attached to an Activity, the Error is caught and processed by the Error
Intermediate Event with the priority depending on the way its error codes are defined:

1. only the error code of the particular error;

2. set of error codes including the particular error code;

3. no particular error code.

4.4 Process Modeling 25

Figure 4.11 Non-Interrupting Error Intermediate Event

Figure 4.12 Interrupting Error Intermediate Event

Error Intermediate Event Attributes

• Error Code Filter defines the filter that returns the expected errors (only error events from the Error reference
that meet the filter criterion trigger the event).

If no filter is defined of returns null, the event catches all errors.

• Error Code is the reference to a local or global context (variable or a variable field) that will store the received
error.

26 Process Model

4.4.6.3.2.3 Cancel Intermediate Events

A Cancel Intermediate Event is an event that handles a Cancel End Event with the aim to cancel the actions of a
Transaction Sub-Process.

Hence, it can be attached only to a boundary of a Transaction Sub-Process that contains a Cancel End Event. When
the Sub-Process finishes with the Cancel End Event, the outgoing flow of the Cancel Intermediate Event attached
to its boundary is taken.

Figure 4.13 Non-Interrupting Cancel Intermediate Event

Figure 4.14 Interrupting Cancel Intermediate Event

4.4.6.3.2.4 Conditional Intermediate Event

A Conditional Intermediate Event is an intermediate event which checks a particular condition and is triggered when
the condition becomes true:

• If placed on an Activity boundary, the condition is checked continuously while the Activity is active or running.
At the moment the condition becomes true, the execution of the Activity becomes interrupted and the Flow
leaving the Conditional Intermediate Event is taken.

Note: There can be one or multiple Conditional Intermediate Events attached to one Activity.

• If used in a workflow as a flow element with an incoming and outgoing flow, when the token reaches the
Event, it is held until the condition becomes true.

Figure 4.15 Non-Interrupting Conditional Intermediate Event

Figure 4.16 Interrupting Conditional Intermediate Event

4.4 Process Modeling 27

4.4.6.3.2.5 Throw Signal Intermediate Event

A Throw Signal Intermediate Event produces a Signal that can be caught by Start Signal Events and Signal Inter-
mediate Events of particular model instances.

It can be used only as a workflow element with one incoming and one outgoing Flow.

When reached during execution, it sends the defined Signal to the defined model instances. If no model instance is
defined, the Signal is sent to its parent model instance. In the target model instances, it is consumed by all running
Catch Signal Intermediate Events waiting for the Signal at the given moment and the Signal Start Events.

The Throw Signal Intermediate Event has to define the signal and the target model instances:

• Model instances defines the IDs of model instances to which you want to send the Signal.

• Signal value defines the Signal value.

Figure 4.17 Non-Interrupting Throw Signal Intermediate Event

Figure 4.18 Interrupting Throw Signal Intermediate Event

4.4.6.3.2.6 Catch Signal Intermediate Event

A Catch Signal Intermediate Event is triggered when it catches a Signal. Subsequently it produces a token which
takes its outgoing Flow.

It can be either attached to a boundary of an Activity or used as a workflow element with one incoming and one
outgoing Normal Flow. When active it waits until it has receives a Signal.

It can define a filter for the Signals it acceptst; if the received signal does not meet the defined filter criteria, it does
not send a token.

The Catch Signal Intermediate Event cannot handle Signals of the type Reference, goal, Plan, or ModelInstance.
Catching such signals causes a runtime exception.

Catch Signal Intermediate Event defines:

• Filter: filter of the accepted Signal

• Signal: reference to a storage, where the caught signal is stored

28 Process Model

Figure 4.19 Non-Interrupting Catch Signal Intermediate Event

Figure 4.20 Interrupting Catch Signal Intermediate Event

4.4.6.3.2.7 Throw Escalation Intermediate Event

A Throw Escalation Intermediate Event is an Event which sends an Escalation object when triggered.

It can be used only as a workflow object with one incoming and one outgoing flow. When reached during execution,
it sends the defined Escalation object, which is propagated throughout its context and up to higher contexts either
until consumed by a Start Escalation Event or a Catch Escalation Intermediate Event or until no higher context is
available.

Throw Escalation Intermediate Event Attributes

• Escalation code defines the escalation code sent with the escalation object.

• Escalation defines the payload of the Escalation object.

Important: It is not possible to filter according to information in payload. You can use only the
escalation code.

4.4.6.3.2.8 Catch Escalation Intermediate Event

A Catch Escalation Intermediate Event is a boundary intermediate event that catches and consumes an Escalation
object that was thrown in its Activity and meets the filter criterion, and produces a token. It can be used only as a
boundary element on an Activity and with an outgoing Normal Flow.

The event is active while the Activity is active. When the Escalation object is thrown in the Activity or its child
contexts, the boundary Catch Escalation Intermediate Event consumes the Escalation object and produces a token
which takes its outgoing Flow. Note that just like other boundary Intermediate Events, it can be non-interrupting or
interrupting.

Catch Escalation Intermediate Event must define a reference object, where the object is stored. It can optionally
define a filter definition: if the received Escalation object does not meet the filter criteria, it is ignored.

Catch Escalation Intermediate Event Notation

Figure 4.21 Non-Interrupting Catch Escalation Intermediate Event

4.4 Process Modeling 29

Figure 4.22 Interrupting Catch Escalation Intermediate Event

Catch Escalation Intermediate Event Attributes

• Filter contains the escalation codes of accepted Escalation objects.

• Escalation defines a reference to a storage, where the caught escalation signal is to be stored.

• Escalation code reference: Event consumes just escalations with the defined escalation code (if the esca-
lation code is not specified then the Event accepts all escalations).

4.4.6.3.3 End Events

An End Event ends a workflow (consumes a token).

A workflow has one or multiple End Events and one or multiple Sequence Flows can enter an End Event. No
outgoing Flow is allowed.

There are multiple types of End Events, which differ by the actions they perform when an execution flow enters the
end events, that is, how they behave when they consume a token.

4.4.6.3.3.1 Simple End Events

A Simple End Event is the basic end Event type which consumes the incoming token; other tokens in the workflow
remain uninfluenced. The particular workflow is finished successfully if it does not contain any other tokens.

Simple End Event Notation

Figure 4.23 Simple End Event

4.4.6.3.3.2 Terminate End Event

When a workflow reaches a Terminate End Event, all tokens in the namespace are consumed and the execution
ends successfully.

If there are other activities in the workflow, they are instantly terminated (as soon as a Terminate End Event con-
sumes one token, any other tokens in the workflow are discarded).

Terminate End Event Notation

Figure 4.24 Terminate End Event

30 Process Model

4.4.6.3.3.3 Error End Events

A Error End Event is an end event that implement error handling on a workflow end. The actions when triggered
depend on the type of the parent namespace of the End Event. When a token enter an Error End Event, enters an
Error End Event the following happens:

• if in a Sub-Process:

The End Event generates an error with the respective Error Code (see Error) and the workflow is finished. The error
is distributed gradually to higher namespaces and can be caught by an Error Intermediate Event contained in any
parent namespace as to trigger a compensation process (see Error Intermediate Event).

• Plan Models

If a Plan Model ends with an Error End Event, the Plan fails (becomes Failed).

• BPMN-based Processes

If a BPMN-based Process instance finishes with an Error End Event, the last transaction is rolled back and
an exception is created.

Figure 4.25 Error End Event

Error End Event Attributes

• Error code defines the error code to be sent.

4.4 Process Modeling 31

4.4.6.3.3.4 Cancel End Events

A Cancel End Event is a special End Event which ends a Transaction Sub-Processes.

When a token enters a Cancel End Event and the parent Transaction Sub-Process has no Cancel Intermediate
Event attached, the last transaction is rolled back.

If there is a Cancel Intermediate Event attached to the parent Sub-Process, the Sub-Process execution fails (the
Sub-Process becomes Interrupted) and the outgoing Flow of the attached Event is taken.

Cancel End Event Notation

Figure 4.26 Cancel End Event

4.4.6.3.3.5 Throw Escalation End Events

When a workflow ends with a Throw Escalation End Event, the event generates an Escalation object with the
respective code and the workflow finishes. The escalation is distributed gradually to higher context and can be
caught by a Catch Escalation Intermediate Event or Escalation Start Event in any parent context.

Escalation End Event Notation

Figure 4.27 Escalation End Event

Escalation End Event Attributes

• Escalation code defines a code sent with the escalation object that serves as the escalation identifier.

• Escalation defines the payload of the Escalation object.

Note: It is not possible to filter according to information in payload. You can use only the escalation
code.

4.4.6.3.3.6 No Exit End Events

A No Exit End Event is an end event that consumes a token in the workflow of an Inline Event Sub-Process without
triggering the Sub-Process' outgoing Flow: no token for any outgoing Flow if present is produced but the Sub-←↩

Process execution finishes with success.

If a Process with such an event is used by a Reusable Inline Event Sub-Process which is not used as part of the
workflow, that is, it does not have an outgoing Flow, the No Exit End Event behaves as a Simple End Event.

Figure 4.28 No Exit End Event

32 Process Model

4.4.6.4 Flows

A Sequence Flow is a connector which establishes an oriented relationship between two elements of a workflow
(Activities, Events, and Gateways) and defines their execution order. The workflow is taken following the indicated
direction and execution semantics of other workflow objects. In GO-BPMN, only the Normal Flow is supported.

Note: Default Flow is considered a special case of Normal Flow.

4.4.6.4.1 Normal Flow

A Normal Flow is a Flow type showing the order of the process Activities it is connecting.

It has a source and a target and indicates the execution behavior.

If the source of a Normal Flow is an Exclusive Gateway, a Normal Flow can be provided a guard. A guard is a
Boolean condition (defined using Expression Language), which has to be true, before the Flow is taken. If the guard
condition is not true, the respective Normal Flow cannot be used (the token cannot pass the flow).

A source or target of a Normal Flow may be:

• Event

• Activity

• Gateway

On execution, the flow transfers the token from the source to the target. If a guard of the flow is defined (the source
has to be an Exclusive Gateway), on token receiving, the Flow guard is evaluated:

• if true, the token is send to the target (the target is triggered);

• if false, the token is held by the Flow and the Flow guard is evaluated continuously.

A Normal Flow is depicted as a solid single line with an arrowhead directed toward the target element. If a guard is
provided, it is shown in square brackets near the arrow.

Figure 4.29 Normal Flow with a guard

Properties:

• Guard defines a condition, which has to be to true if the token is to pass through the Flow.

4.4.6.4.2 Default Flows

A Default Flow is a special Normal Flow, which is taken if no other Flow can be used.

The Default Flow represents the last option among the available Flows leaving an Exclusive Gateway. If guards of
other Flows prevent them from being taken (they are evaluated to false), the Default Flow is used.

A source element of a Default Flow is an Exclusive Gateway.

The Default Flow has a default marker (slash) show at the beginning of its arrow line.

Figure 4.30 Default Flow

4.4 Process Modeling 33

4.4.6.5 Activities

An Activity represents a piece of work that need to be done and that either by a human or a system (machine). The
term covers Tasks, which are considered atomic, and the Sub-Process, which encapsulate other elements.

An Activity is executed whenever it receives a token: the token is typically passed by the incoming flow of the
Activity: each token results in a single Activity execution.

Figure 4.31 Caption text

In the example above, the parallel gateway "splits" the incoming tokens into two tokens: further down your execution
flow, the tokens enter an Activity: each token will result in its own Activity execution, in this case, the activity is
executed twice: once for the token from the Condition Intermediate Event and once for the token from the Timer
End Event.

The logic of the execution depends on the activity type and additional mechanisms, such as, looping. Mind that
looping does not influence the number of Activity executions.

An activity has an arbitrary number of incoming and one or none outgoing sequence flow. The flows influence the
execution in the following ways:

• Incoming flows:

– If an activity does not have an incoming Flow, it is instantiated when the process is instantiated. If there
are multiple Activities with no incoming flows in one Process, all such Activities are instantiated (multiple
tokens are produced).

– If it has one or multiple incoming flow, it is instantiated always when the any of the flows send a token to
the activity.

• Outgoing flows:

– If an activity has no outgoing flow, the execution finishes along with the Activity execution (its token
ceases to exist after the activity is accomplished).

Activities can have intermediate events attached to their boundary. These events react to specific events or condi-
tions that can occur during the activity execution; for example, they can be used if the execution of an activity should
time out after a certain amount of time.

34 Process Model

4.4.6.5.1 Tasks

A Task is an atomic Activity in a workflow: it represents the smallest logical piece of work, which cannot be broken
down any further (for example, sending a file, filling in a questionnaire, displaying a text, etc.).

A Task can have none or multiple incoming, and none or one outgoing Normal Flow.

When the workflow hits a task, the task becomes alive and its logic is executed: if the execution is successful, the
task becomes accomplished. If the parent model instance is suspended, an alive task also becomes Suspended.

Figure 4.32 Task Lifecycle

Task types can be reflected as Records: this allows you to create instances of tasks by instantiating them as Record
instances. Typically you will then send the Record as a parameter to the Execute Task which makes sure its
gets executed as a task in your workflow. In the LSPS implementation, a task type is reflected after you set the
Create activity reflection type flag.

Note: To-dos generated by human tasks can be saved. The human task remains alive while the to-do
is saved.

Every task is of a particular task type: the task type determines what kind of action the task performs. Depending
on the type, every task has a set of parameters, which define the input and output data for the task execution.

You can execute a task multiple times in one execution using the looping mechanism.

Figure 4.33 Task notation

In addition to the common modeling element attributes and apart from attributes specific for a task type, tasks define
the following attributes:

• Public: task type visibility

If not Public, the task type cannot be used by any importing modules.

../stdlib/re_modulecore_tasks.html

4.4 Process Modeling 35

• Deprecated: flag which signalizes that the task will be removed in the next version of the model or application
If the flag is selected, on validation, a warning notification is logged about that the user is using a deprecated
task.

• Parameters: task specific parameters Parameters define the following properties:

– Name: parameter name

– Type: data type of the parameter

– Required: if true the parameter is obligatory

– Dynamic: if true the parameter value is wrapped in a non-parameteric closure automatically (the pa-
rameter is then processed as { -> <parameter_value> }.) This is the case of the ui←↩

Definition parameter in the User task. Hence the user does not need to define the uiDefinition
parameter as { -> <form()> } but only provides directly the call to the form (form()).

• Class name: name of the task class

4.4.6.5.2 Sub-Process

A Sub-Process is a compound Activity encapsulating a workflow: it is a “process within a process” that serves to
organize the workflow content.

It exists in its own context with its variables and parameters and its workflow is triggered as part of its process. It
can be triggered by token passed by its incoming flow or by an event: if you want to trigger a Sub-Process with
events, use an Inline Event Sub-Process.

A Sub-Process can be of the following types:

• Embedded Sub-Process defines its workflow in-place inside the parent Process or Sub-Process

• Reusable Sub-Process defines a reference to a process and uses this process as its content

4.4.6.5.2.1 Embedded Sub-Process

An Embedded Sub-Process is a Sub-Process that is defined as part of its parent Process or Sub-Process. Its
workflow must contain one None Start Event or one or multiple Activities with no incoming Flows.

On runtime, a sub-process instance is created when the token passes to the Sub-Process through its incoming
flow: then the None Start Event produces a token and Activities with no incoming Flow are triggered. The execution
finishes when there are no tokens in the sub-process instance.

Also, an embedded Sub-Process can be marked as a transaction embedded Sub-Process to mark it as comprising
a business transaction that is "atomic". Its workflow can finish with a Cancel End Event: the subprocess must have
a Cancel Intermediate Event on its border with an outgoing flow: When the flow finishes with the Cancel End Event,
the outgoing flow of the border Cancel Intermediate Event is taken.

Figure 4.34 Embedded Sub-Process notation

36 Process Model

4.4.6.5.2.2 Reusable Sub-Process

A Reusable Sub-Process references a Process: when triggered, it instantiates the Process as a subprocess.

Figure 4.35 Reusable Sub-Process notation

Reusable Sub-Process Attributes

• Referenced Process Name defines the assigned Reusable Process.

• Parameters are key-value pairs used as parameters when the Sub-Process is instantiated (similar to process
parameters)

4.4.6.5.2.3 Inline Event Sub-Process

When you mark a Sub-Process as an inline sub-process, its Start Events are considered part of the parent context,
which is either a process or another sub-process. Such start events can be of different types so they are triggered
when a particular event occurs in their parent Process or sub-process: When they start with a None Start Event
they are triggered when the parent is triggered and in the case of other Start Events whenever the trigger event
occurs in the parent.

Note: Also a BPMN-based process can contain any type of Start Events: this allows you to trigger it
when it is used in a Reusable Subprocesses.

For example, if a process instance finishes with an Escalation End Event, all Escalation Start Events in its inline
event subprocesses receive the escalation and one creates its sub-process instance. This allows you to consume
a token and at the same time, produce a token somewhere else while keeping the process instance running.

4.4 Process Modeling 37

An Inline Event Sub-Process can be placed into the workflow with an incoming and outgoing Flow or with no
incoming or outgoing Flow.

• When used as part of a Process or Sub-Process workflow with at least one incoming Flows and one outgoing
Flow, the workflow inside the Sub-Process must contain a None Start Event or one or multiple Activities
without an incoming Flow and it can contain an arbitrary number of Start Events other than the None Start
Event. The subprocess is then triggered as follows:

– None Start Event is triggered when a token passes through the incoming Flow into the Sub-Process: a
new Sub-Process instance is created and the None Start Event produces a token.

– Start Events of other types are triggered whenever their event occurs during the life of the parent in-
stance, that is, either a Process or Sub-Process instance.

– Activities with no incoming Flow are triggered whenever a Sub-Process instance is created and that as
part of the Sub-Process instance.

• When part of a Process or Sub-Process with no incoming or outgoing Flows:

– None Start Event is triggered when the parent Process or Sub-Process is triggered.

– Start Events of other types are triggered whenever their event occurs during the entire life of the parent
Process or Sub-Process.

– Activities with no incoming flow are triggered whenever a Sub-Process instance is created and that as
part of the Sub-Process instance.

Note: Inline Sub-Processes cannot use the looping mechanism.

38 Process Model

4.4.6.5.3 Looping

Looping Activities are executed multiple times: however, the individual loop runs are not considered different Activity
instances, that is, looping does not change the amount of tokens.

Loops can be executed in the following ways:

• standard (for): Activity is repeated successively (serially) the defined number of times unless the loop condi-
tion becomes false.

• multi-instance (foreach): Activity is repeated in parallel or in sequential manner over a list of items.

Note: Alternatively, loops can be also created by cycling the workflow using flow elements: In such
loops, a Gateway has an outgoing flow “returning” to a preceding Gateway.

Looping defines its iterator, which stores the number of the loop starting from 0 and is incremented by 1 after each
loop.

4.4.6.5.3.1 Multi-Instance Looping

Multi-instance looping enables you to execute a loop of one Activity on a defined list of objects, and that, in a parallel
or sequential way: when a token enters a multi-instance looping Activity, the system creates multiple instances of
the Activity, for example, multiple To-dos generated by the same Task. However, all the instances represent the
execution of the single Activity: only one token exists even though there are multiple instances of the Activity. The
activity becomes accomplished only after all its instances are finished; and similarly, if one of the Activities fail with
an Error for example, all the instances finish.

Looping iterator is initialized to 0 and incremented by 1 after each loop.

Multi-instance looping defines the following:

• list of elements the looping is performed for (For each attribute);

• how the multi-instance loop is to be executed:

– sequential: when one instance of the Activity finishes, a new instance is created

– parallel: activity instances for all list objects are started at once; the Activity finishes after all its instances
finished.

Multi-Instance Looping Notation

Figure 4.36 Activity with multi-instance loop

Multi-Instance Looping Attributes

• Loop activity defines the activity to be looped.

• For each contains a list of objects to be used in the loops.

• Ordering defines loop ordering strategy (sequential or parallel).

4.4 Process Modeling 39

4.4.6.5.3.2 Standard Looping

Activity with a Standard looping definition is repeated serially.

On each loop of standard looping, the system checks before each loop if the loop condition is true. If it is false, the
looping finishes. This check can be performed also after each loop. The maximum number of loops is determined
explicitly by the loop maximum. Once this maximum is reached, the looping finishes regardless of loop condition.
When the looping is finished the Activity release a single token to its outgoing flow.

Note: If the loop condition is evaluated always before the execution of the loop and the condition is at
the first evaluation evaluated false the Activity will be never performed.

Looping iterator is initialized to 0 and incremented by 1 after each loop.

Standard Looping Notation

Figure 4.37 Activity with standard loop

Standard Looping Attributes

• Loop: name of the loop iterator

• Loop condition: condition that finishes the loop; it defines also its time time, the moment when the loop
condition is checked (before or after a loop)

• Loop maximum: maximum number of loops

4.4.6.6 Gateway

A Gateway is a workflow modeling element used to direct, or fork or merge workflows.

GO-BPMN defines the following Gateway types:

• Parallel Gateway creates or merges multiple flows

• Exclusive Gateway selects one flow out of multiple flows

Important: The target element of a Sequence Flow leaving a Gateway must not be a Timer Intermedi-
ate Event.

40 Process Model

4.4.6.6.1 Parallel Gateways

Parallel Gateway changes the number of parallel flows in the process.

It can have multiple incoming and outgoing flows:

• The gateway waits until it has received workflows from all incoming flows (tokens from all incoming flows must
enter the gateway).

• Once all incoming flows have reached the gateway, all outgoing flows are taken (possibly multiple tokens are
produced).

Figure 4.38 Parallel Gateway notation

4.4.6.6.2 Exclusive Gateways

An Exclusive Gateway directs the flow so that exactly one outgoing flow is taken depending on the circumstances,
rendering it a decision-making mechanism similar to the switch language construct.

An exclusive gateway has one or several incoming normal flows and one or several outgoing flows. If there are
multiple outgoing flows, each flow, apart from the default flow, must define a guard with a Boolean condition.

When a workflow enters an Exclusive Gateway, one of the following happens:

1. The first outgoing flow with the guard condition which is true is taken.

2. If no such flow is available, the default flow is taken.

3. If no default flow is available, the execution fails with a NoValidBranchError.

Figure 4.39 Exclusive Gateway notation

4.4.6.7 Swimlanes

Swimlanes serve to denote and set common performers for multiple elements of a process workflow: if a human task
has no performer, the performer set the closest ancestor swimlane is used. This applies to elements in Reusable
Sub-Processes.

Swimlanes can contain any element allowed by their parent entity, be it a Plan, BPMN-based Process, or Sub-←↩

Process: if you are using Swimlanes in a Plan, you can use the same elements, which you would use in a Plan
normally.

4.4 Process Modeling 41

Pool

A Pool groups a workflow executed fully or partially by a common set of performers, typically one organization or
department. It sets the common performer set: The performers property set on the Pool is adopted by process
elements that require the performers parameter but do not define it themselves.

Each BPMN-based process, plan body, or sub-process may have an arbitrary number of Pools with one Pool marked
as the Main Pool: Only the flow in the Main pool is executed. Non-main Pools serve for informational purposes only
and are excluded from validation.

Pools may contain an arbitrary number of Lanes. Once a Pool contains at least one Lane, the Pool cannot contain
any other BPMN elements: all flow elements must be in a Lane.

Note Sequence Flows cannot cross Pool boundaries.

Figure 4.40 Vertical expanded Pool with Lanes

Figure 4.41 Horizontal expanded Pool with Lanes

42 Process Model

Figure 4.42 Vertical collapsed Pool with Lanes

Figure 4.43 Horizontal collapsed Pool with Lanes

Pool Attributes

• Main is a Boolean attribute; if true the workflow in the Pool is executed.

• Performers defines the performers of the Tasks in the Pool if the Tasks do not define their performers or the
setting is overriden by a child Lane.

Lane

A Lane holds a part of a workflow of its parent, either a Pool or another Lane, and defines the performers of the
activities in the Lane.

A Lane can contain other Lanes: if a Lane contains a Lane, it cannot contain any other BPMN elements. All workflow
elements in a Lane take over the Performers parameter value of the Lane. If a parent Lane does not define the
parameter, the parameter of the "closest" parent Lane is used. If no such Lane exists, the performers set on the
Pool are used.

Sequence Flows of Lane workflows can cross Lane boundaries.

4.4.7 Goal Model

A Goal Model is a hierarchy of Achieve and Maintain Goals, and Plans and their connections in a Goal-based
Process. It specifies what needs to be achieved by the process while the Plan bodies specify how to achieve it.

After all executable Modules in a Model are instantiated, processes of executable Module instances are instantiated
and Goal processes trigger all their top Goals: The top Goals become ready and if their pre-condition is met then
running. When a Goal becomes running, all its sub-Goals become ready: the Goal triggers all its sub-Goals; a
ready sub-Goal can become running and commit further to their child modeling elements, that is, either to Achieve
Goals or to Plans. If a Goal has several Plans as its child elements, the Goal triggers one Plan, and that either the
first Plan with its pre-condition evaluated to true or if no Plan pre-conditions are provided, a randomly chosen Plan.

Important: Since pre-conditions are evaluated continuously, make sure they do not perform any as-
signments to prevent performance issues.

If a Plan fails, another Plan is triggered. If all Plans fail, the parent Goal fails.

4.4 Process Modeling 43

4.4.7.1 Achieve Goal

An Achieve Goal is a modeling element that represents a condition or a state that is to be achieved. Achieve Goals
typically represent explicit objectives of the process, such as, placing an order, producing a car, sending a message,
etc.

An Achieve Goal exist in a goal hierarchy: it may have no parent modeling element or it can have another Achieve
Goal as its super-Goal. It can have one or multiple child elements connected with the Decomposition flow. Its child
elements can be either Achieve Goals or Plans: It is not possible to decompose a single Achieve Goal into both
Goals and Plans.

On runtime, Achieve Goals go through a set of statuses defined by their life cycle).

An Achieve Goal can define the following:

• Pre-condition is a Boolean expression checked continuously while an Achieve Goal is Ready. If a pre-
condition becomes true, the Goal becomes Running.

Important: Since pre-conditions are evaluated continuously, make sure they do not perform any
assignments to prevent performance issues.

• Deactivate condition is a Boolean expression checked continuously while an Achieve Goal is Not finished
(Inactive/Ready/Running). If evaluated to true, the Achieve Goal, its sub-Goals and Plans become Deacti-
vated immediately.

• Visibility defines Goal access rules: if set to Public, the Goal is accessible from the entire model; if you
unselect the option, it is private and accessible only from within its module.

Figure 4.44 Achieve Goal in the iconic notation

Figure 4.45 Achieve Goal in the decorative notation

4.4.7.1.1 Achieve Goal Life Cycle

When a GO-BPMN process is instantiated, its Goals are instantiated as well: all Goals become inactive. An inactive
Achieve Goal is not prepared for running and waits for its activation. All top Achieve Goals of the process instance
become ready: When a goal becomes ready, it has its pre-condition checked. If the pre-condition evaluates to
true, the goal becomes running. The pre-condition is checked continuously while the Goal is ready.

When a goal becomes running, it activates either all its sub-goals or one Plan, that becomes ready.

A Running Achieve Goal can become achieved or failed:

• It becomes achieved when one of its Plans is achieved or all of its sub-Goals are achieved or deactivated;

44 Process Model

• It becomes failed when at least one of its sub-goals failed or none of its Plans was achieved.

Important Achieve Goal status can be influence by the deactivation and activation mechanism.

Figure 4.46 Lifecycle of Achieve Goals

4.4.7.2 Decomposition

In a Goal model, Decomposition represents a relationship used either for detailing a Goal to its sub-Goals, or
specifying how a Goal can be achieved by corresponding Plans.

A Decomposition is presented as a connector used in Goal hierarchies and enables you to establish acyclic oriented
relationships between:

• two Achieve Goals,

• Maintain Goal and Achieve Goal, and

• Goal and Plan.

Maintain Goals cannot be targets of a Decomposition (every Maintain Goal is a top Goal).

During execution the following rules apply:

• If a Goal is decomposed in sub-Goals, all the sub-Goals are committed to and executed. The super Goal is
accomplished only if all its sub-Goals are Achieved or Deactivated.

– If one of the sub-Goal fails, the super Goal fails and any other sub-Goals become deactivated. The
failure is distributed also to other parent Goals of the failed Goal, that is, if a Goal, which fails, has any
parent Goals, these parent Goals fail as well.

– Super Goal can succeed even if one or multiple Goals were deactivated. If a Goal is decomposed
in several Plans, only one of the Plans is triggered (either the one with the pre-condition evaluated to
true or the first randomly-chosen Plan). When a Plan is Achieved, its parent Achieve Goal becomes
Achieved or its parent Maintain Goal becomes Ready.

– If a Plan fails, an alternative Plan is selected.

– If no other Plan can be triggered, that is, if all available Plans fail, the parent Goal fails.

Figure 4.47 Decomposition notation

4.4 Process Modeling 45

4.4.7.3 Maintain Goal

A Maintain Goal serves to make sure a condition is true and that either while an Achieve Goal or while the process is
running. The Achieve Goal or the Process represent the scope of the Maintain Goal: if the Achieve Goal or Process
is running and the condition on the Maintain Goals becomes false, the Maintain Goal is triggered: The Maintain
Goal and its sub-tree serve to make the condition true again.

A Maintain Goal is always a top Goal and can be decomposed in Plans or Achieve Goals.

The scope of a Maintain Goal is the Process by default. To define an Achieve Goal as its scope, use the Maintain
Scope connector.

Usage Example: The maintain condition defines the minimum amount of material that must be on
stock at all times. If the amount on stock is lower than the defined amount, the condition becomes
false, and the Maintain Goal is activated: Plans or sub-Goals attached to the Maintain Goal provide for
restocking.

4.4.7.3.1 Maintain Goal Attributes

• Maintain condition is a Boolean expression checked continuously while the Maintain Goal is Ready. When
the condition becomes false, the Maintain Goal becomes Running.

Important: Since pre-conditions are evaluated continuously, make sure they do not perform any
assignments to prevent performance issues.

• Visibility defines the access rules to the Maintain Goal.

A Maintain Goal can be shown either in the decorative or iconic notation.

Figure 4.48 Maintain Goal in the iconic notation

Figure 4.49 Maintain Goal shown in the decorative notation

4.4.7.3.2 Maintain Goal Life Cycle

During execution of a Goal-based Process instance, Maintain Goals go through a particular set of stages, referred
to as a life cycle. At every stage, the goal is in a particular state.

46 Process Model

Figure 4.50 Maintain Goal life cycle without the Activation mechanism

The execution of a Maintain Goal depends primarily on its Maintain Scope. A Maintain Scope may be the entire
parent Goal-based Process or a particular Achieve Goal.

A Maintain Goal is Inactive if its scope is not running:

• If the scope is the parent process, the maintain goal becomes immediately Ready

• If the scope is an Achieve Goal, the Maintain Goal remains Inactive while the Achieve Goal is Inactive or
Ready.

When the scope becomes Running, the Maintain Goal becomes Ready and the maintain condition is checked
continuously.

At the moment, when the maintain condition becomes false, the Maintain Goal becomes Running: its sub-goals
become Ready or one of its Plans becomes Running. Note that the maintain condition is not checked while the
Maintain Goal is Running.

When the sub-tree execution of a Maintain Goal is finished, the following can occur:

• If the scope is still Running, the Maintain Goal becomes Ready and the maintain condition is being checked
again.

• If the scope is no longer Running, the Maintain Goal becomes Inactive.

If the scope is an instance of a Goal-based Process which is Finished, the Inactive state is only transient and the
Maintain Goal becomes Deactivated.

4.4 Process Modeling 47

4.4.7.3.3 Maintain Scope

A Maintain Scope flow defines the Achieve Goal scope of a Maintain Goal (the flow may connect only an Achieve
Goal and a Maintain Goal and each Maintain Goal can have only one Maintain Scope. If you require a more diverse
Maintain Scope of a Maintain Goal, consider defining a maintain condition.

Maintain scope is visualized as an oriented solid arrow with a short perpendicular line as an arrowhead pointing
toward the Achieve Goal, which is the scope of the maintenance.

Figure 4.51 Maintain Scope

4.4.7.3.3.1 Maintain Goal with Maintain Scope

If the element of the maintain scope is:

• reactivated, the Maintain Goal becomes Ready.

• not active, the Maintain Goal is Inactive.

4.4.7.4 Plan

A Plan is an element of a Goal hierarchy which specifies what to do in order to achieve its parent Goal. It contains
a Plan Model, which is an uninterrupted work flow of Events and Activities connected with Flows.

A Plan must have exactly one incoming decomposition originating from a Goal: one Plan can have only one parent
Goal. It is the leaf element of a Goal hierarchy with no outgoing flow elements.

Figure 4.52 Plan in iconic notation

Figure 4.53 Plan in decorative notation

A Plan can define the following:

• Pre-condition is a Boolean condition, which is continuously checked while a Plan is Inactive.

• Failure Error Codes is a set of error codes (every error code being a string), which cause the Plan to fail
after it has received any of the error codes: the error can be produced either by an error code end event in its
body). If null, any error code causes the Plan to fail.

48 Process Model

4.4.7.4.1 Plan Life Cycle

When a Process is instantiated, all the Plans are created and becomes Inactive. An Inactive Plan becomes Running
when triggered by its parent Goal. At that moment, the Plan pre-condition is evaluated. If evaluated to true, the
Plan triggers execution of its Plan Model, that is, its None Start Event produces a token and its namespace context
is initiated.

Note: If a Goal is decomposed in several Plans and you want the system to select a Plan based on
some context data, use the pre-condition expression.

While Running, a Plan can be deactivated by its parent goal. A deactivated Plan becomes Inactive. A Running Plan
becomes Failed, if its Plan Model ends with an Error End Event, or an error code is caught Errors.

A Plan becomes Achieved, if the execution of its Plan Model finishes with any other End Event.

Figure 4.54 Plan life cycle

4.4.7.5 Goal Activation and Deactivation

Goal activation and deactivation is a mechanism that enables an instant change of a Goal status to either make the
entire Goal sub-tree to come to a halt or to continue its execution.

You can activate and deactivate Goal either from the <../management/modelinstancemanagementpds.html←↩

::goalactivation>Management perspective of PDS or with the activate() and deactivate() functions of
the Standard Library.

4.4 Process Modeling 49

4.4.7.5.1 Deactivation

Goals, both Achieve and Maintain, can define a deactivate condition, which causes the Goal to become Deactivated
when the condition becomes true.

The condition is checked continuously while the following is true:

• For Achieve Goals, while they are Not Finished (inactive, ready, or running).

• For Maintain Goals, while they are Alive (parent process instance is running).

When the condition becomes true, the Goal becomes Deactivated immediately. Goals can be deactivated manu-
ally as well.

When a goal is deactivated, the following happens:

1. All its sub-Goals and Plans in a top-down manner become Deactivated.

2. Any Running child Plans stop their execution immediately and becomes Inactive.

Note: An Achieve Goal or a Plan is deactivated also when their parent fails.

4.4.7.5.2 Activation

If an Achieve Goal is Achieved, Failed, or Deactivated, it is considered Finished. Only a finished Achieve Goal can
be activated: on activation it becomes Ready. Note that the status of its parent Goals remains unchanged, only its
sub-elements go through their life cycle.

A Maintain Goal can be deactivated at any time while it is Alive: on its deactivation, the Maintain Goal stops execution
of all its sub-Goals and Plans instantly. A Maintain Goal also becomes Deactivated when the scoped Achieve Goal
becomes Deactivated as well as when the parent Goal-based Process becomes Finished.

Figure 4.55 Life Cycle of Achieve Goals with Activation and Deactivation

50 Process Model

Figure 4.56 Life Cycle of Maintain Goals with Activation and Deactivation

Chapter 5

Data Type Model

A data type model comprises all user-defined data types called records along with their relationships. The purpose
of records and their relationships is to define the data structure that accommodates the business data used in your
model.

5.1 Records

A record represents a complex data type, such as, a person, product, service, etc.

On runtime, a record is used as a blueprint for its instances, which represent business objects: While an Invoice
record defines the structure of an invoice, a particular invoice is represented by an instance of the Invoice record: the
instances are created when the new operator is encountered; for example, you can create a person record instance
of the Person record as new Person("Doe", "John", date(1982, 1, 14)). For further information
on the behavior of operators when a record is involved, refer to the Expression Language guide.

The structure of a record is defined by a set of fields, for example, a record Persona could have the fields surname,
firstName, and dob.

A record can inherit fields and properties from another record: it can become the subtype of a record. In such
an inheritance relationship, it is frequently required that the supertype record be never instantiated: to apply this
restriction, a record is defined as abstract. On the other hand, if a record cannot be used as a supertype, it is
marked as final.

To prevent any changes to a record instance, a record is read-only. The record instance can be initialized and
deleted during runtime; however, neither the record instance nor instances of its subtypes can be modified. Note
that read-only records can only be targets of data relationships, not their sources.

Figure 5.1 Invalid data relationship between read-only Records

../expression-lang/datatypes.html#recorddt

52 Data Type Model

If a record should not be accessible from model instances, it can be marked as a system record. System records
cannot be instanced or modified from model instances. Such operations can be performed only by custom
objects implemented in Java in your LSPS application code.

Figure 5.2 Record notation

5.2 Record Fields

A structure of a record is defined by its record fields with each field being of a particular data type. Simple data
types should be used preferably.

5.3 Record Inheritance

Inheritance is an oriented relationship between two records in which the source Record is a more specific record
than the target record, for example, the Person record as a supertype of the NaturalPerson and Legal←↩

Person Records. The subtype record adopts all fields of the supertype record and the supertype's supertype
records, etc. Hence a subtype is able to substitute its supertype in any operation valid for the supertype.

A inheritance relationship cannot be cyclic, for example, if type T has subtype V, the subtype V cannot have T as its
subtype.

A subtype record inherits all fields of its supertypes. Hence a supertype can be used instead of its subtype. Let's
assume a record 'Person' with fields date_of_birth and mothertongue. This record is the supertype of
the record Employee. The Employee subtype contains the date_of_birth and mothertongue fields
inherited from Person, and additional salary and position fields. Wherever the Person type is used, the
Employee type can be used; however, not vice versa since the salary and position values would be missing.

If a record field is read-only, its value is set on model instantiation and cannot be changed during runtime. The
setting is preserved when inherited, that is, if record A contains a read-only field A and record B is the supertype of
record A, then the inherited Field remains read-only.

Figure 5.3 Inheritance notation

../sdk/customobjects.html
../sdk/customobjects.html

5.4 Record Import 53

Figure 5.4 Person is the super type of the Employee and Employee is the super type of ITEmployee: All
fields of Person are inherited by both subtypes and ITEmployee inherits all fields of Employee.

5.4 Record Import

The record import mechanism serves for importing records defined in an imported module or in another data type
definition. Such imported records are referred to as record imports.

Record imports unlike records have the following limitations:

• If the record import is an import of a shared record, it can be related only to shared records:

• If the record import is an import of a shared record, any relationships of the record import can define a
navigation directed toward the shared record import; However, navigation out of the shared record import is
not supported.

Note: These rules do not apply if the shared record of the record import is defined in another data
type definition of the same module.

• No data relationship can be established between shared record imports if their parent data type definition
uses a different target database.

Figure 5.5 Record import notation

5.5 Data Relationships

A data relationship serves to establish logical connections between two records: the relationship defines the prop-
erties of navigation to either ends. Though one end is designated as the Target and the other as the Source end of
the relationship, the relationship works both ways equally and properties of the navigations to either end are defined
for both ends (they are symmetrical).

A relationship can be cyclic; that is, the source and target can be the same record. For example, an employee might
need to be in a relationship with another employee where both are represented by instances of the same Employee
record.

54 Data Type Model

Note: Read-only records can only be targets of data relationships, but not their sources. This prevents
a possible inconsistency of data.

Data relationships define the following:

Navigability Navigability of a data relationship end enables you to "move" to the related record. To establish
navigability, the respective relationship end must define its name: every data relationship must define at least
one of its ends' name.

Example: The records Author and Book are connected with a relationship. The end pointing to
the Book is named "books" so you can navigate from the Author record to the Book record. Hence
when you define a variable of the Author type, you can define as part of the definition also the
Author's book. The relationship end pointing to the Author does not have a name. Therefore, you
cannot create a Book with its Author.

Multiplicity Multiplicity of a relationship and defines how many record instances can be at the end of the
relationship:

• Single: only one record instance of the record can be on this end of the relationship.

For example, let's assume Sport Shoes and Production Batch records: a pair of shoes is produced as
part of only one batch; hence the relationship from the Sport Shoes to the Production Batch has Single
multiplicity.

• Set: multiple different record instances can be on this end of the relationship.

In the example, this would be the multiplicity on the relationship end pointing to the Sport Shoes.

If the relationship connects two shared records, the Set multiplicity can define the Order By property.
The property defines the database column that is used to order the related record instances. If no value
is specified, the instances are ordered according to the primary key. For example, if the shared record
Person has a navigable Set relation to the shared record Citizenship and defines the Order by property
as countryCode, then the Citizenship record instances fetched as related record instances by the
expression Person.citizenship will the ordered according to the countryCode.

• List: multiple record instances can be on this end of the relationship

Note: If one end defines the List multiplicity and the other end a Single multiplicity, then for
every item of the List exactly one item in the other end is available. Such a relationship does
not handle situations where one entity is available multiple times in the list. In this case, a join
table is needed.

Composition A composition is a "target-is-part-of-source" relationship: the value at the target end cannot exist by
itself, that is, without a source value. If the source value is removed, all its target values are removed.

The source end of a composition relationship must be of the single multiplicity, while the target end can be
of any multiplicity: when the value at the source end is deleted, the values at the target end are deleted as
well–cascade delete takes place.

Based on the example, when you delete a Person, all its Legs are deleted; when you create a Leg, it must have a
relationship to a Person. If you delete a Person's leg, the Person is not deleted. Note that a leg can belong to only
person only.

5.5 Data Relationships 55

5.5.1 Deleting Record Instances in a Data Relationship

The record instances in a relationship are deleted depending on the relationship multiplicity as follows:

• On a relationship with single multiplicity:

– if the source instance is deleted, the entire instance takes the value null.

Figure 5.6 Deleting a Source Record instance

– if the target instance is deleted, the target instance takes the value null.

Figure 5.7 Deleting Target Record instance

If you want to delete the source instance as well, set the relationship end pointing to the source record
as composition.

• On a relationship with set or list multiplicity, the deleted record instance of the set or list is removed from
the relationship (the list or set record Instance with the null value is removed).

56 Data Type Model

Figure 5.8 Deleting a Target Record instance in the Set Relationship

5.6 Shared Records

Shared records serve to persist data: Instances of shared records are persisted in a database, unlike instances
of common records and hence survive their context. Any readings, modifications, and deletions of shared record
instances are immediately reflected in the mapped database entry.

A shared record is mapped to a database table and its fields are mapped as the table columns. Note that if a fields
of a shared record is of a different type than the Boolean, Integer, Decimal, String or Date type, you need to define
the BLOB size so that a sufficient space is reserved in the underlying database column for the data (for information
on LSPS implementation of shared records and the related mapping and fetching mechanisms refer to Process
Design Suite User Guide.

Figure 5.9 Shared Record notation

../pds/PersistentData.html
../pds/PersistentData.html

5.7 Enumerations 57

5.7 Enumerations

Enumeration is a special data type that holds literals. The literals represent the possible literal values of the enu-
meration object and are called in the form <enumeration_name>.<literal_name>. The comparison
operators =, !=, <, >, <=, >= can be used on the literals of the same enumeration type. Since the literals are ar-
ranged as a list of values, comparing enumeration literals is based on comparing their indexes: The order depends
on the order of the literal as modeled in the enumeration.

Enumerations don't engage in relationships: they cannot be targets or sources of inheritance or data relations.

In addition to the common modeling element attributes, an enumeration defines the Deprecated flag, which sig-
nalizes that the enumeration will be removed in the next version of the model or application. In Living Systems®
Process Design Suite, if the attribute is true, the validation displays an information message that the enumeration is
deprecated.

Figure 5.10 Enumeration notation

58 Data Type Model

Chapter 6

Organization Model

An organization model serves to acquire a group of persons (users) that meet some requirements.

The model defines a hierarchy of organization elements, which group persons, the users of the application. The
model can contain the following:

• A Role represents a group of persons with common expertise.

• A Unit is an umbrella element for one or multiple roles.

• Decompositions establish relationships between roles and units.

On runtime, a runtime version of the role can be assigned to a person: the person then belongs to the role and any
ancestor role or organization unit. A runtime role can define parameters with values. Parameters of any ancestor can
be used. If an ancestor has a parameter with the same name as its descendant, the parameter on the descendant
is considered the same parameters as the parameter on the ancestor.

To acquire persons in a role or organization unit, call the unit or role as <ROLE_UNIT>(<MAP_OF_PARAM←↩

ETERS>). You can use the functions in the human module of the Standard Library for additional
features.

6.1 Organization Roles

An organization role groups persons with common behavior, rights, expertise, etc.

One role is usually assigned to multiple persons and one person can have multiple roles. It can be decomposed
to other roles and be a target of a decomposition, descendant of a role or organization unit: a person with a role
belongs to all ancestor roles and organization units.

Roles can define parameters, which allow you to exclude persons who are in the role or its descendant role but do
not have the specified parameter with the specified value.

Figure 6.1 Iconic role notation

../stdlib/re_modulehuman_functions.html#xc4a143ed-4f76-4447-8af8-afd74608967e

60 Organization Model

Figure 6.2 Decoration Role notation

6.2 Organization Unit

An organization unit is an umbrella element for roles: A person is part of an organization unit if they belong to a role
that is a descendant of the organization unit.

Note that users are added only to roles, not organization units.

It can be decomposed to roles or other organization units and be a target of a decomposition originating from an
organization unit: a person with a role belongs to all ancestor roles and organization units.

Organization units can define parameters which allow you to exclude persons who are in a descendant role of the
unit but do not have the specified parameter with the specified value.

Figure 6.3 Iconic Unit notation

6.3 Decomposition in Organization Models 61

Figure 6.4 Decoration Unit notation

6.3 Decomposition in Organization Models

Note: GO-BPMN uses two decompositions: decompositions in goal structure and decomposition in
organization models. The latter is documented below.

Organization units and roles can be decomposed with the decomposition relationship in one or several other orga-
nization elements: This enables you to create organization hierarchies and group organization elements; a person
who belongs to a role belongs also to all its ancestor roles or role units.

One organization element can be the target or origin of multiple decompositions. However, decompositions cannot
create cyclic relationships.

Decomposition can be used between the following organization elements:

• Unit-to-Unit decomposition: breakdown of an Organization Unit into a sub-Unit;

• Unit-to-Role decomposition: including a Role in the Unit;

• Role-to-Role decomposition: child Role representing a more specialized Role;

Note: The Role-to-Unit decomposition is not supported.

img{Decomposition.png, Decomposition notation, 90px}

62 Organization Model

6.4 Resolving Roles and Units to Persons

When you request persons with a role, it is resolved as follows:

• Without a parameter value or with a parameter value null or "∗", all persons with the role or its descendant
roles are returned (role parameters are ignored).

• with a parameter value, it returns all persons with the role or its descendants which have the parameter with
the specified parameter value or do not have the parameter (if the parameter has a different value, the person
is excluded).

When you request persons of an organization unit:

• without a parameter value or with the parameter value null or "∗", it returns all persons with a descendants
of the organization unit (parameters are ignored)

• with a parameter value, it returns all persons with a descendants of the organization unit which have the
parameter with the specified value or do not have the parameter (if the parameter has a different value, the
person is excluded).

Hence, parameters of the role units, organization units and roles provide a filtering mechanism over persons that
belong to a role unit.

Example: Consider the following organization model:

Figure 6.5 Unit decomposed in two Roles

6.4 Resolving Roles and Units to Persons 63

• If a task is assigned to the Organization Unit Support (for example, performers ->
{Support([->])}), it is assigned to all persons that have the Middleware or Platform
Runtime Roles regardless of their parameter values.

• If a task is assigned to the Organization Unit Support with a parameter (for example,
performers -> {Support(["product"->"Wildfly"])}), it is assigned to all
persons that have the Middleware or Platform Runtime Roles with no parameter or with the
parameter product set to Wildfly.

Example: The role TechnicalExpert defines the parameter expertise.

Figure 6.6 Parametric Role definition

The person Eva is a technical expert without a field of expertise: she is considered an expert in all
fields and has the runtime role TechnicalExpert with no parameter.

64 Organization Model

Figure 6.7 Person view of a person with the runtimee role TechnicalExpert with no parametric value

John and James are technical experts specialized in hydraulics and electrics: They have the runtime
roles TechnicalExpert with the expertise parameter set to hydraulics and electrics.

Figure 6.8 Person view of a person with the runtime role TechnicalExpert with the 'hydralics' expertise
parameter

• If a task is assigned to TechnicalExpert([->]), the task is assigned to

– all three persons regardless of the parameter values (any of 'TechnicalExpert' can perform
the task);

• If a task is assigned to a TechnicalExpert("expertise"->"hydraulics", the task
is assigned to:

– Eva, the technical expert with no parameter value,
– John, the technical expert with the hydraulics parameter value James is left out.

6.5 Organization Element Import

For presentation purposes, you can add the views of the Roles and Unit from other organization definitions to
the diagram in your definition as Role and Unit Imports. Note that such imported Role or Unit views cannot be
decomposed, however, they can be a target of a Decomposition.

Note: Roles and Unit from other Modules become available for Diagram import only after their Module
is imported.

Chapter 7

Diagrams

Diagrams provide space for a graphical representation of elements of a particular type in a Module: Visual repre-
sentation (an element view) of one modeling element can appear several times in one or several Diagrams while
still referencing the same single element. Note that a modeling element can be shown in one Diagram only once.

To add additional information for the reader of a Diagram, you can use diagram elements: these are the only
elements that actually exist only within the Diagram.

A diagram can depict only elements from the same type of definition:

• Goal Diagrams depict Goals, Plans, and their Decompositions;

• Plan Diagrams depict modeling elements of a Plan (events, activities, flow objects, etc.);

• BPMN Diagrams depict modeling elements of a BPMN-based Process (events, activities, flow object, etc.);

• Data Type Diagrams depict Data Types and their subtype relations;

• Organization Diagrams depict views of Organization Units, Roles, and their Decompositions.

7.1 Goal Diagram

A Goal Diagram is a Diagram depicting an arbitrary number of modeling element of a goal model. It may contain
Goals views, Plans views, and vies of their Decompositions, plus allowed diagram elements (Text Annotations,
Associations).

Owned by Goal-based Process it depicts only views of Goals and Plans of the respective Process. A Goal-based
Process may contain an arbitrary number of Goal Diagrams.

7.2 Plan Diagram

A Plan Diagram is a Diagram depicting element views of a plan body.

It may show views of one or several modeling elements of a plan body, and objects owned by the Diagram (Anno-
tations and Associations).

Plan Diagrams are owned by Plans. One Plan may contain an arbitrary number of Plan Diagrams. Plan Diagrams
can show view of any modeling element contained in the respective Plan Body, however, a modeling element can
be shown in one Plan Diagram only once.

66 Diagrams

7.3 Process Diagram

A Process Diagram is a Diagram depicting element views of a body of a BPMN-based Process.

It may show views of one or several modeling elements of a body of a BPMN-based Process, and objects owned
by the Diagram.

7.4 Organization Diagram

An Organization Diagram is a visual representation of a part or of an entire Organization Model.

Organization diagrams are owned by organization models. One model may contain one or several organization
diagrams. Organization diagrams can show any organization element contained in an organization model, however,
in one diagram, every element can be shown only once.

An organization diagram may contain diagram elements (Text Annotations, Associations).

7.5 Data Type Diagram

A Data Type Diagram is a diagram depicting element views of Record types.

Data Type Diagrams are owned by Modules and may contain views representing Record types and related
entities: imported Record types, inheritance relationships of Records, and general diagram elements (Text Annota-
tions, Associations).

A Module may own an arbitrary number of Data Type Diagrams. View of one data type element (record, record
import, inheritance) may be shown in an arbitrary number of Data Diagrams.

7.6 Diagram Elements

Diagrams can contain diagram elements, which serve for documentation purposes, and have no execution seman-
tics (they do not influence execution in any way). As such they are not considered elements of the definition but
belong to the diagram only.

7.6.1 Diagram Frames

Diagram frames are diagram elements, which allow you to display the content of another diagram as read-only. The
content of the diagram frame reflects the current state of the referenced diagram.

Diagram frame can display only a diagram of the same type as the diagram; for example, you cannot insert a goal
diagram frame to an organization diagram. A diagram frame cannot reference itself.

Tip: Use directed associations and annotations to establish logical links between an element shown in
a diagram frame or the entire diagram frame and other elements in the diagram.

7.6 Diagram Elements 67

7.6.2 Hyperlinks

Hyperlinks are diagram elements that provide direct links to a location, resource, or element: When you click a
hyperlink, the linked entity is displayed.

There are four types of hyperlinks:

• Diagram hyperlink: link to another diagram;

• URL hyperlink: link to a URL;

• Element hyperlink: link to an element of the project;

• Resource hyperlink: link to a module resource of the project.

7.6.3 Text Annotations

A Text Annotation is a diagram element containing free-text information.

It does not influence execution: it is en element with no execution semantics. A Text Annotation provides additional
information and has only an informative character. It belongs to the particular diagram.

It may be connected to one of several diagram elements using Associations. If left unconnected, a Text Annotation
is intended to provide information about the entire Diagram.

Figure 7.1 Text Annotation notation

7.6.4 Associations

An association is an element without a semantic value used for informative linking of element views and diagram
elements.

It may be assigned a particular direction to indicate a relationship orientation (Directed Association).

Figure 7.2 Association notation

Association attributes:

• Direction defines the arrow direction.

68 Diagrams

	1 GO-BPMN Modeling Language
	2 Encapsulation
	2.1 Context
	2.1.1 Visibility
	2.1.2 Namespaces
	2.1.3 Metadata
	2.1.4 Variables
	2.1.5 Module
	2.1.5.1 Module Import

	3 Model
	3.1 Suspend
	3.2 Finish

	4 Process Model
	4.1 Goal Processes
	4.2 BPMN Processes
	4.3 Reusable Processes
	4.4 Process Modeling
	4.4.1 Assignments
	4.4.2 Monitoring an Element
	4.4.3 Signal
	4.4.4 Errors
	4.4.5 Escalation
	4.4.6 Plan and BPMN Modeling Elements
	4.4.6.1 Plan Model
	4.4.6.2 BPMN Model
	4.4.6.3 Events
	4.4.6.4 Flows
	4.4.6.5 Activities
	4.4.6.6 Gateway
	4.4.6.7 Swimlanes

	4.4.7 Goal Model
	4.4.7.1 Achieve Goal
	4.4.7.2 Decomposition
	4.4.7.3 Maintain Goal
	4.4.7.4 Plan
	4.4.7.5 Goal Activation and Deactivation

	5 Data Type Model
	5.1 Records
	5.2 Record Fields
	5.3 Record Inheritance
	5.4 Record Import
	5.5 Data Relationships
	5.5.1 Deleting Record Instances in a Data Relationship

	5.6 Shared Records
	5.7 Enumerations

	6 Organization Model
	6.1 Organization Roles
	6.2 Organization Unit
	6.3 Decomposition in Organization Models
	6.4 Resolving Roles and Units to Persons
	6.5 Organization Element Import

	7 Diagrams
	7.1 Goal Diagram
	7.2 Plan Diagram
	7.3 Process Diagram
	7.4 Organization Diagram
	7.5 Data Type Diagram
	7.6 Diagram Elements
	7.6.1 Diagram Frames
	7.6.2 Hyperlinks
	7.6.3 Text Annotations
	7.6.4 Associations

