
Living Systems® Process Suite

Expression Language

Living Systems Process Suite Documentation

3.1
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 Expression Language 1

2 Expressions 3

2.1 Block . 3

2.2 Literals . 3

3 Data Types 5

3.1 Data Type Mapping . 6

3.2 Casting . 6

3.3 Object . 6

3.4 Simple Data Types . 7

3.4.1 Binary . 7

3.4.2 String . 7

3.4.3 Boolean . 8

3.4.4 Integer . 8

3.4.5 Decimal . 9

3.4.6 Date . 10

3.5 Complex Data Types . 10

3.5.1 Collections . 10

3.5.1.1 List . 11

3.5.1.2 Set . 11

3.5.2 Map . 12

3.5.3 Reference . 12

3.5.4 Closure . 13

3.5.5 User-Defined Record . 14

3.5.6 Property . 14

3.5.7 Type . 15

3.5.8 Enumeration . 15

3.5.9 Null . 15

iv CONTENTS

4 Operators 17

4.1 Arithmetic Operators . 17

4.2 Assignment Operator . 17

4.3 Logical Operators . 18

4.4 Comparison Operators . 18

4.5 Concatenation . 19

4.6 Reference and Dereference Operators . 20

4.7 Inclusion Operator . 20

4.8 Namespace Operator . 20

4.9 Selector Operator . 21

4.10 Ternary Conditional . 21

4.11 Null-Coalescing Operator . 21

4.12 Access Operator . 22

4.13 Safe-Dot Operator . 22

4.14 Operator and Chaining Precedence . 22

4.15 Evaluation Order . 23

4.15.1 Chaining Expressions . 23

5 Comments 25

6 Local Variables 27

7 Function Calls 29

8 Controlling Flow 31

8.1 Branching . 31

8.1.1 if-then-end . 31

8.1.2 if-then-else-end . 31

8.1.3 if-then-elsif-end . 32

8.1.4 if-then-elsif-then-else-end . 32

8.1.5 switch . 32

8.2 Looping . 33

8.2.1 for . 33

8.2.2 foreach . 33

8.2.3 while . 34

8.2.4 break . 34

8.2.5 continue . 34

9 Exception Handling 35

9.1 Throwing Exceptions . 35

9.2 Catching Exceptions . 36

9.3 Built-in Errors . 36

10 Model Elements 37

11 Reserved Words 39

Chapter 1

Expression Language

The LSPS Expression Language is a statically typed, functional language used in models of the Living Systems®
Process Suite to compute and process values.

It is not a full-fledged programming language and it is not possible to define business models exclusively in the LSPS
Expression Language; however the language supports your modeling efforts: you will typically define properties of
GO-BPMN elements as expressions in the LSPS Expression Language.

For example, you design a BPMN process with a Log task (Log tasks log messages into the logs and possibly to
the console). You define the log message as an expression that results in a String in the Log property:

"Process " + processID + " started."

This expression uses String literals "Process " and " started", and the variable processID. On runtime, the system
fetches the value of processID and concatenates the strings. The resolved expression is then used as the log
message. Note that the processID variable is not defined in the expression: the variable is a global variable, which
is a model element that exists in a variable resource file (refer to Model Elements).

2 Expression Language

Chapter 2

Expressions

An expression is a combination of literals, data types, keywords, variables, function calls, operators, and calls to
model elements that results in a single value; for example, "Hello " + getWorld() is a String expression
that concatenates two strings: "Hello " and the string returned by the getWorld() function call. The getWorld()
function is a model element and cannot be defined in the LSPS Expression Language; we assume, it returns the
string "world!". The result of the expression is the string value "Hello world!". The interpretation is ruled by
the precedence rules and associations.

Every expression exists in its own namespace and hence context; for example, the message property of a Log task
exists in its own namespace, which exists in the immediate parent namespace. The expression namespace is a
local namespace. More on namespaces in GO-BPMN is available in GO-BPMN Modeling Language Specification.

An expression namespace can define its local variables that can be used within the expression namespace. Note
that you cannot define entities like functions, or custom data types in the language directly. However, you can make
use of functions, model variables, custom data types, etc. defined in the model.

2.1 Block

An expression block represents its own namespace (implicitly if, then, else represent their own expression blocks):
if you create a variables in an expression block, you cannot access from outside of it.

To create an expression block explicitly, start the block with the begin keyword and finish it with the end keyword.

//declaration of a local visibility variable
def Boolean visibility :=

//beginning a codeblock
begin

//declaration of a visibility variable in the codeblock (not available out of the block):
def Boolean visibility := false;

end;

Language constructs such as if, switch, foreach, while, for implicitly represent a block.

2.2 Literals

Literals represent fixed values. The notation of literals depends on the data type they represent. The notations are
documented in Data Types.

4 Expressions

Chapter 3

Data Types

The LSPS Expression Language is a statically typed language: all values must define their data type before they
can be used on runtime. The data type determines what value the object can hold.

When you declare a local string variable (def String s), an object that can hold a reference to a string is
created in the memory.

Data types can inherit properties from each other: one type becomes the supertype of another type: An object of
a data type can be used anywhere where you can use its super type, for example, when assigning values, sending
function arguments, etc. For example, you can assign a variable of the type Decimal also a value of the type
Integer, since Integer is a subtype of Decimal. These relationships apply to built-in as well as custom data types in
a hierarchy.

Figure 3.1 Built-in Data Type Hierarchy

6 Data Types

All data types are part of the data type hierarchy with the Object data type as the root of the tree.

3.1 Data Type Mapping

The data types are implemented as Java or LSPS classes. This information is useful when you need to pass them
to your Java code.

Expression Language Type Class

String java.lang.String

Boolean java.lang.Boolean

Binary com.whitestein.lsps.lang.exec.BinaryHolder

Decimal com.whitestein.lsps.lang.Decimal

Integer com.whitestein.lsps.lang.Decimal

Date java.util.Date

Reference com.whitestein.lsps.lang.exec.ReferenceHolder

Collection com.whitestein.lsps.lang.exec.CollectionHolder

List com.whitestein.lsps.lang.exec.ListHolder

Set com.whitestein.lsps.lang.exec.SetHolder

Type com.whitestein.lsps.lang.type.Type

Map com.whitestein.lsps.lang.exec.MapHolder

Closure com.whitestein.lsps.lang.exec.ClosureHolder

Record com.whitestein.lsps.lang.exec.RecordHolder

Enumeration com.whitestein.lsps.lang.exec.EnumerationImpl

Property com.whitestein.lsps.lang.exec.Property

Object java.lang.Object

3.2 Casting

Casting takes place when you change the type of a value to another type. When "widening" a type, that is changing
a value of a subtype to its supertype, the type change occurs automatically. When "narrowing" a type, you need to
cast the type explicitly:

<objectName> as <newObjectType>

person as NaturalPerson

Note: Alternatively, you can use the cast() function of the Standard Library, for example, cast(o,
type(D))

3.3 Object

The Object data type is the super type of all data types and therefore the only data type without a supertype. It is
represented by java.lang.Object. Therefore if you want to allow any data type, for example, as a parameter, use the
Object data type. It is represented by the java.lang.Object class. All objects can hold the null value.

3.4 Simple Data Types 7

3.4 Simple Data Types

Simple data types contain values without further data type structuring.

3.4.1 Binary

Objects of binary data type are typically used to hold binary data when downloading and uploading files, or working
over binary database data.

It is represented by com.whitestein.lsps.lang.exec.BinaryHolder.

The Binary literals are not supported.

To define the type:

Binary

The Binary data type serves to work with binary data typically from another resource, typically, pictures, videos,
etc.: You could define a Field of a Record as being of the Binary type and populate it with picture data.

3.4.2 String

A String holds a sequence of Unicode characters. The data type is implemented by the java.lang.String
class.

To define the type:

String

To create an instance:

"Sequence of Unicode characters"

A String can contain special characters defined using their ASCII codes. For example, you can use the ASCII tab
code (#9) to have a tab in your String, line feed (#10) to make a multi-line String, etc., for example:

"This" + #10 + "is" + #10 + "a" + #10 + "multi-line" + #10 + "string with "+
"multiple" + #10 + " new lines " + #10 + " which represent " + #10 + "line breaks."

To escape characters, use the double-quote (") character:

"This is all one string: ""Welcome to String escaping!"""

To annotate a string that is not to be localized, add the hashtag # sign in front of the string.

#"This is a string value which will not be localized."

The hashtag # sign signalizes that the String is to remain unlocalized and that this was the intention of the developer.
Such Strings are excluded from checks of unlocalized Strings.

To create a local variable:

def String s := "My String"

../pds/Localization.html#nonlocalized

8 Data Types

3.4.3 Boolean

Boolean objects hold the values null, true or false. It is implemented by the java.lang.Boolean class.

To define the type:

Boolean

To create an instance:

true

To create a local variable:

def Boolean s := true

The expression def Boolean boolVar := true declares and defines a local variable of the type.

3.4.4 Integer

Integer objects hold natural numbers and their negatives. The data type is a subtype of the Decimal type. It is
represented by com.whitestein.lsps.lang.Decimal.

Note that the underlying Java type is BigDecimal; hence no relevant maximum limit applies to the value.

To define the type:

Integer

To create an instance:

-100

To create a local variable:

def Integer i := 42

3.4 Simple Data Types 9

3.4.5 Decimal

Decimal objects hold numerical fixed-point values. It is represented by com.whitestein.lsps.lang.Decimal.

Note: A Decimal type is internally represented by two integer values: an unscaled value and a scale.
The value is hence given as <UNSCALED_VALUE>∗10∗∗<SCALE_VALUE>. The integer scale
defines where the decimal point is placed on the unscaled value. The scale is a 32-bit integer. If zero
or positive, the scale is the number of digits to the right of the decimal point. If negative, the unscaled
value is multiplied by ten to the power of the negation of the scale. Decimal values are, for example,
2e+12, -1.2342e0, 1.0.

When assigning a value of the type Decimal, you need to define the scale and rounding mode. The following
rounding modes can be used on decimals:

• UP: rounds away from zero

• DOWN: rounds towards zero

• CEILING: rounds towards positive infinity

• FLOOR: rounds towards negative infinity

• HALF_UP: rounds towards the nearest neighbor unless both neighbors are equidistant, in which case it
rounds up

• HALF_DOWN: rounds towards nearest neighbor unless both neighbors are equidistant, in which case it
rounds down

• HALF_EVEN: rounds towards the nearest neighbor unless both neighbors are equidistant, in which case, it
rounds towards the even neighbor

• UNNECESSARY: asserts that no rounding is necessary

The rounding mode is defined for decimal variables or for a record field of the type Decimal.

To define the type:

Decimal

To define a Decimal type with Scale 100 and Rounding Model UP:

Decimal(100, UP)

To create an instance:

-10.0;
6.63E-34

To create a local variable:

def Decimal intVar := 100

Important: Decimal values are normalized if they contain 0 digits after the decimal point: decimal value
1.0 and integer value 1 have the same numerical value and therefore 1.0 == 1.

10 Data Types

3.4.6 Date

The Date object holds a specific time. It is represented by java.util.Date.

Important: Only dates since the introduction of the Gregorian calendar, that is, the year 1582 are
supported: for Dates that occurred before, a shift in days can occur rendering the date incorrect.

To define the type:

Date

To create an instance:

d’yyyy-MM-dd HH:mm:ss.SSS’

To create a local variable:

def Date myDate := d’2015-12-24 20:00:00.000’

Important: When constructing a date, consider using the date functions from the Standard Library.

3.5 Complex Data Types

Complex data types are composite data types based on other data types.

3.5.1 Collections

A Collection is a groupings of items of a particular data type. It is represented by com.whitestein.lsps.lang.exec.←↩

CollectionHolder.

Collections are ordered and immutable: once a collection is created, it cannot be changed, while you can change
individual collection items. Each item of the collection represents an expression

To access an element of a Collection, you need to specify the position of the element in the List. Note that the first
element of a List is on position zero. For example, [10,20,30][1] returns 20 as position 0 of this list points to
the value 10, the first element of the list.

Hierarchy of collections follows the hierarchy of their elements: List<TA> is a subtype of List<TB>, if TA is a
subtype of TB. Set<TA> is a subtype of Set<TB>, if TA is a subtype of TB.

To define the type:

Collection<T>

3.5 Complex Data Types 11

3.5.1.1 List

A List represents an ordered collection of items of a type with possible duplicate values. It is represented by the
com.whitestein.lsps.lang.exec.ListHolder class.

To define the type:

List<T>

To create an instance:

["a", "b", "c", "d"]

List of lists

[["a", "b"], ["b", "c", "a"]]

To access an item in a List: Specify the position of the item in the List starting from 0: For example,
[10,20,30][1] returns 20 as position 0 points to the value 10, the first element.

Unlike on Sets, accessing list items is performance-wise efficient.

3.5.1.1.1 Creating a List of Integers with the Range Operator

To create a List of Integers, you can use the .. operator, the range operator:

1..5
//is equivalent to [1, 2, 3, 4, 5]

3..1
//is equivalent to [3, 2, 1]

3.5.1.2 Set

A Set represents an ordered collection of items of a type with no duplicate values. It is represented by the com.←↩

whitestein.lsps.lang.exec.SetHolder class.

To define the type:

Set<T>

To create an instance:

//Set<Integer>:
{1,2,3};

To access an item in a Set: Specify the position of the item in the Set starting from 0: For example,
{10,20,30}[1] returns 20 as position 0 points to the value 10, the first item.

Unlike in Lists, accessing items is performance-wise inefficient.

12 Data Types

3.5.2 Map

Maps hold keys with their values and are immutable: once a map is created, it cannot be changed. You can change
its key-value pairs, however, the map itself cannot be modified.

It is represented by com.whitestein.lsps.lang.exec.MapHolder.

To define the type:

//type map with the K type of its keys and the V type of its values:
Map<K, V>

Note that hierarchy of maps follows the hierarchy of its key and value types: Map<KA, VA> is a subtype of Map<KB,
VB>, if KA is a subtype of KB and VA is a subtype of VB.

To create an instance:

[1->"a", 2->"b"]

To initialize an empty map, use the empty-map operator [->]:

def Map<Object, Object> myEmptyMap := [->];

To get a value of a key, specify the key for the appropriate value in square brackets, for example, ["first←↩

Key"->"a", "anotherKey"->"b"]["anotherKey"] returns the string "b".

3.5.3 Reference

A Reference holds a reference expression that resolves to a variable or a record field (slot), not their value.

A Reference is conceptually similar to pointers in other languages. However, a Reference points to a variable or a
record field, not to memory slot.

• A Reference to a variable resolves to the variable object

• A Reference to a record field resolves to the record instance and the association path.

The data type is represented by com.whitestein.lsps.lang.exec.ReferenceHolder.

To define the Reference type:

Reference<T>

To create a Reference instance, use the & reference operator:

&<TARGET>

∗∗To get the value in the referenced slot, use the ∗ dereference operator.

Example Use of Reference

//creates new Patient record instance with the diagnosis "flu":
def Patient r := new Patient(diagnosis -> "flu");
~
//creates the local variable status that holds the reference to the diagnosis field of the Patient record instance:
def Reference<String> status := &(r.diagnosis);
~
//function sets the status to cured on the patient:
setStatusToCured(&r.status);
~
//implementation of the setStatusToCured() function:
//def Reference<String> status:= statusReference;
//*status:="cured";

3.5 Complex Data Types 13

3.5.4 Closure

A closure is an anonymous function that can declare and make use of local variables in its own namespace and
use variables from its parent expression context as opposed to lambdas. It is represented by com.whitestein.lsps.←↩

lang.exec.ClosureHolder.

To define the type:

//Syntax: { <INPUT_TYPE_1>, <INPUT_TYPE_2> : <OUTPUT_TYPE> }
{ String : Integer}
//Closure that that has no parameters and returns an Object:
{ : Object}

Subtyping in closures is governed by their parameters and return type: Closure A is a subtype of closure B when:

• the return type of closure A is a subtype of the return type of closure B

• and parameter types of closure B are subtypes of parameter types of closure A.

{ S1,S2,... : S } is subtype of { T1, T2,... : T } when T1 is subtype of S1, T2 is subtype of S2, etc. and S is subtype
of T.

To create an instance:

//Syntax: { <PARAMETERS> -> <CLOSURE_BODY> }
{s:String -> length(s)}

Parameter types can be omitted:

{s -> length(s)}

The system attempts to infer the type of closure arguments and its return value. Note that the types might be
resolved incorrectly. To prevent such an event, consider defining the argument type explicitly as in the example.

To evaluate a closure use the parentheses () operator with the closure arguments:

def {Integer:String} closureVar := {x:Integer -> toString(x)};
def String closureResult := closureVar(3);

14 Data Types

3.5.5 User-Defined Record

A user-defined Record is the subtype of the Record type. It serves to create custom structured data types. A
Record can define relationships with another Records.

It is not possible to declare a Record type in the Expression Language: Records are modeled in the data-type
editor of the Living Systems® Process Design Suite. However, you can create instances of Records. When you
pass a Record, for example, as a function argument, it is passed by reference.

It is represented by com.whitestein.lsps.lang.exec.RecordHolder.

To create an instance:

new <RECORD>(<NAME_OF_FIELD> -> <FIELD_VALUE>, <NAME_OF_FIELD> -> <VALUE>, ...))

For example:

new Book(genre -> Genre.FICTION, title -> "Catch 22", author -> new Author(name -> "Heller, Joseph"))

Use the Dot operator to access Record fields or related records and fields.

Example: def declares a new variable of the MyRecord type. new creates a new MyRecord instance, which is
assigned to the variable (the instance is the proper memory space with the record) . Variable r points to the My←↩

Record instance and it is returned by the expression.

def MyRecord r := new MyRecord(recordField -> "value")

Function call with a new Record instance as its argument:

acquireApproval(new Approval(outcome -> "permitted"))

To access fields of a Record, use the access operator .:

book.title

Note that the dot operator . fails with an exception if the <EXPRESSION> with the access operator is null. Use
the safe-dot operator to prevent the exception.

When accessing a field or record that is of the type Reference, the property is automatically dereferenced. Therefore
the expression (∗ref).fieldName and ref.fieldName are identical.

3.5.6 Property

The Property data type holds the type of a Field in a user-defined Record.

Example

def Property authorNameField := Author.firstName;

../modeling-language/datatypemodel.html#datarelationships
../pds/DataTypeModel.html
../pds/DataTypeModel.html

3.5 Complex Data Types 15

3.5.7 Type

The Type data type holds data types, for example, a Type can hold the value String data type, a particular Map data
type, a Record data type, etc. It is represented by com.whitestein.lsps.lang.type.Type.

The Type data type can be used to check if object are of a particular data type. The output can be then further used
when Casting the object.

To define the type:

Type<T>

To create an instance:

//type is a keyword:
type(<TYPE>)

Example Usage

switch typeOf(person)
case type(NaturalPerson) -> getFullName(person as NaturalPerson)
case type(LegalPerson) -> getFullName(person as LegalPerson)
case type(PersonGroup) -> getFullName(person as PersonGroup)
default -> person.code + #" <Unknown type>"

end

3.5.8 Enumeration

An Enumeration is a special data type that holds literals. It is represented by com.whitestein.lsps.lang.exec.←↩

EnumerationImpl.

You cannot create an Enumeration type in the Expression Language directly: It is modeled as a special
Record type.

To define the type:

<ENUMERATION>

To create an instance:

<enumeration_name>.<literal_name>

Example:

//Weekday is an enumeration with values MONDAY, TUESDAY, etc.
def Weekday wd := Weekday.WEDNESDAY

You can compare enumeration literals with the comparison operators =, !=, <, >, <=, >= for enumerations of the
same enumeration type. Enumeration literals are arranged as a list of values; hence the comparison is based on
comparing their indexes: the order depends on the order of the literal as modeled in the Enumeration.

3.5.9 Null

The Null data type signalizes an unspecified value: its only value is null.

The data type is the subtype of every other data type, so that any object can take the null value.

To define the type:

Null

../modeling-language/datatypemodel.html#enumerations
../modeling-language/datatypemodel.html#enumerations

16 Data Types

Chapter 4

Operators

Operators are symbols that cause a particular action, for example, comparison of values, summing up, assignment,
etc.

4.1 Arithmetic Operators

Arithmetic operators are used on Integer and Decimal values similarly to their use in algebra.

Operator Description Example Result Note
+ addition 2 + 2 4
- subtraction 3 - 1 2
++ increment by 1 intVar++ or ++intVar postfix: returns value; then incre-

ments by one and assigns it to the
referenced object (2++); prefix: in-
crements value by 1 and reassigns it
to the referenced object

-- decrements by 1 intVar++ or ++intVar postfix: returns value; then decre-
ments by one and assigns it to
the referenced object (2++); prefix:
decrements value by 1 and reassigns
it to the referenced object

∗ multiplication 3 ∗ 3 9

/ division 9 / 3 3
% modulo 10 % 3 1
∗∗ exponentiation 3 ∗∗ 3 27 Since expressions are evaluated pri-

marily in the left-to-right manner un-
less precedence or association rules
take over, the expression 2∗∗3∗∗4 is
evaluated as 2∧3∧4∧∧; the exponent
follows the ∗∗ operator

4.2 Assignment Operator

To assign a value to use the assignment operator :=:

18 Operators

//assign value 1 to x:
int x := 1

4.3 Logical Operators

Logical operators are used to combine multiple expressions that each return a boolean value. Combination of
expressions with logical operators return a single boolean value.

Operators and their return values

and, && (conjunction) true if both operands are true; otherwise false

or, || (inclusive disjunction) true when at least one of the operands is true; otherwise false

xor, exclusive disjunction true when the operands value is not identical, that is one operand is true and the
other operand is false; otherwise false

not or ! (negation) true if the operand is false; false if the operand is true (unary operator)

Truth Table

Operand A Operand B A and B A or B A xor B not A

true true true true false false
true false false true true false
false true false true true true
false false false false false true

Since logical expressions are evaluated from left to right, the short-circuit evaluation is applied on and and or
expressions:

• for and expressions:<false> and <not_evaluated> evaluates to false

• for or expression <true> or <not_evaluated> evaluates to false

4.4 Comparison Operators

Comparison operators serve to compare two values. Comparing returns a boolean value.

To compare two values, you can use the following operators:

• = or == (equal) and != (not equal, alternatively noted as <>) check if the values of any data type are equal.

def String varA:="value"
def String varB:="value"
varA=varB
//returns true

Note: When comparing records, it is the object identity that is compared, not the record value.
Analogously, on shared records, the record IDs are compared. However, on non-shared records,
you can define fields or relationships so that the values of these are used when comparing records
(refer to the Record Fields in the GO-BPMN Modeling Language Guide).

../modeling-language/datatypemodel.html#recordfields

4.5 Concatenation 19

• < (lesser), > (greater), <= (lesser or equal), and >= (greater or equal) check if values of decimals, integers,
and strings are lesser, lesser or equal, greater, or greater or equal and returns true or false.

When comparing Strings, they are compared lexicographically as per Java lexicographic ordering of strings,
for example, "Čapek" > "Hemingway" and "Čapek" > "Asimov" are true.

• like searches for an occurrence of a pattern in a string

The operator supports the wildcards ? for one character and ∗ for one or multiple characters

"matching exactly THIS word" like "* ??????? THIS *"

• <=> (the spaceship operator): checks if values are lesser, equal, or greater and returns -1 if the left operand
is lesser than the right operand, 0 if the left operand and right operand are equal, and 1 if the left operand is
greater than the right operand.

Applicable to the String, Decimal, Integers, and Date types (Date is a complex data type defined in the
Standard Library)

person1.name <=> person2.name

4.5 Concatenation

To concatenate two Strings, use the + concatenation operator.

varStringA+"String literal"

The String concatenation operator + can concatenate also a String and any subtype of the Object type: the Object
type is converted to the appropriate String value and concatenated with the String; for example, a Date value is
converted to a human readable date representation when concatenated with a string. Note that the String object
must come first in such expressions.

String concatenation example If the first operands of the + operator is a string, the + operator is considered
automatically the operand of concatenation and the non-string operand is automatically converted to a string.

"Timestamp: " + date("2014-07-31", yyyy-MM-dd)
//The date() function uses the DateTimeFormat implementation of the joda library

(http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html) and returns a Date object;
//the function is evaluated as if wrapper in toString: toString(date("2014-07-31", yyyy-MM-dd))

Resulting string:

Timestamp: Thu Jul 31 00:00:00 CEST 2014

Note: If you want to keep a non-string operand before the string operand in concatenation, start your
expression with the empty String literal "", for example, "" + author.surname + ", " +
author.firstname.

20 Operators

4.6 Reference and Dereference Operators

The reference operator & returns Reference to a variable or a property path from a variable in the context of
the variable. The dereference operator ∗ takes a Reference value and returns the value currently stored in the
referenced variable or property.

//instantiates record c1 with c1.name "Walter White":
def Partner c1 := new Partner(name -> "Walter White");
~
//reference variable ref with reference c1.name (current value "Walter White"):
def Reference<String> ref := &c1.name;
~
//variable x assigned dereferenced ref, that is "Walter White":
def String x := *ref;
~
//c1 assigned a new record instance with the name "Jesse Pinkman":
c1 := new Partner(name -> "Jesse Pinkman");
~
//new variable y assigned the dereferenced ref value (that resolves to "Jesse Pinkman"):
def String y := *ref;
~
//note that the value held by x remains "Walter White"

In the example the variable part is c1 and the property part is .name. To acquire the value of a reference, use the
dereference operator ∗.

References hold the referenced expression and the associated context. In our example the referenced expression
is c1.name.

4.7 Inclusion Operator

The inclusion operator in checks if an element is in a set or list.

The check returns the String "1 is in mySet" if 1 is in mySet.

if 1 in mySet
then "1 is in mySet"

end

4.8 Namespace Operator

The module namespace operator (::) is used to refer to elements of other module namespaces.

Consider ModuleA with a variable var imported into ModuleB. You can access var from ModuleB as follows:

ModuleA::var

The mechanism of module import is described in the GO-BPMN Modeling Language Specification.

4.9 Selector Operator 21

4.9 Selector Operator

To access items in collections or maps, use the selector operator [] to specify the element to be returned:

on sets

name_of_set[element_position]

on lists

name_of_list[element_position]

Note that the first element of a List is on position zero. For example, [10,20,30][1] returns 20.

on maps

name_of_map[element_key]

4.10 Ternary Conditional

The ternary conditional operator ?: enables you to define a condition and two expressions. If the condition eval-
uates to true the first expression is returned. If the condition evaluates to false, the second expression is
returned.

With the operator you can write the expression

if <CONDITION> then <EXPRESSION_1> else <EXPRESSION_2> end

as

<CONDITION> ? <TRUE_EXPRESSION> : <FALSE_EXPRESSION>

4.11 Null-Coalescing Operator

The null-coalescing operator ?? is a more effective version of if <expression_1> != null then
<expression_2> with <expression_1> evaluated only once.

<expression_1> ?? <expression_2>;
//is equivalent to:
if <expression_1> != null then

<expression_1>
else

<expression_2>
end

Example:

def String title := getTitle() ?? "Default Title";

22 Operators

4.12 Access Operator

The dot operator . serves to access fields of a Record, possibly via relationships. Example:

<EXPRESSION>.<FIELD>

For example:

book.title

Note that the dot operator . fails with an exception if the <EXPRESSION> with the access operator is null. Use
the safe-dot operator to prevent the exception.

4.13 Safe-Dot Operator

To prevent the system from raising an exception when it attempts to access a record field of a record which is null,
use the safe-dot operator ?..

Similarly to the dot operator, the ?. operator serves to access Record Fields, possibly of related Records. Unlike
the dot operator, no exception is raised when the record is null. The expression simply returns null.

<expression>?.field

Example:

def Person person := null;
//returns null without an error:
person?.email;
//you can also chain the access requests:
person?.contact?.operator?.operatorCallCode

4.14 Operator and Chaining Precedence

Generally, expression are evaluated from left to right.

Mathematical operators, logical, and relational operators follow their natural operator precedence:

1. unary before multiplicative before additive and

2. negation before relational before equality before exclusive disjunction before conjunction before disjunction.

Parentheses override operator precedence and the expression in parenthesis is evaluated as a whole.

Operator precedence order

1. :: (scope operator)

2. [] (selector), () (function/closure call), . (dot operator), ?. (safe dot operator)

4.15 Evaluation Order 23

3. +, -, & (reference), ∗ (dereference)

4. ?? (ifnull)

5. ∗ (multiplication), / (division), % (modulo), ∗∗ (exponentiation)

6. + (addition), - (subtraction)

7. <, >, <=, >=, <=>

8. = and == (equal), != (not equal), <>, like, in (inclusion)

9. cast, as

10. not and ! (negation)

11. and and && (conjunction)

12. or and ||, xor (disjunctions)

13. ?: (ternary if)

14. := (assignment)

15. ; (chaining operator)

4.15 Evaluation Order

The order of expression evaluation at runtime is generally from left to right, that is, first the left-hand operand is
evaluated and only then the right-hand operand is evaluated. Note that operator precedence can influence the
evaluation order.

4.15.1 Chaining Expressions

To chain multiple expression, divide them with a semi-colon or a new line. A chained expression returns the return
value of the last expression in the chain. Intermediary return values of the other chained expressions are ignored.

def String varString; varString := "Hello" //two expressions chained by a semi-colon (;)
varString:=varString + "World" //an expression chained by a new line

24 Operators

Chapter 5

Comments

Characters in code marked as comments are not interpreted on runtime and serve to provide information about the
code.

To comment out a single like use the // characters: anything following the // characters until the end of the line is
considered a comment.

uiCreateBook::createBook() //This is a comment.
//The book is defined as a shared record.

To comment out multiple lines, mark the start of the comment with the /∗ symbols and finish it with ∗/

/* Multiline
code
comment */

26 Comments

Chapter 6

Local Variables

Local variables are created as part of an expression or an expression block and cannot be accessed from outside
of it. However, from within an expression you can refer to any variable that exists in the scope of the expression and
its parent scopes.

def String upperVar := "1";
begin
def String lowerVar := "2";
upperVar := "3";

end;
//this is not correct:
//lowerVar := "4";

To create a local variable use the def keyword in an expression. Note that def only declares the variable:

def <VARIABLE_TYPE><VARIABLE_NAME>

The variable value when declared is null, which is returned as its value.

To assign a value to a variable, use the assignment (:=) operator: such an expression returns the right-hand-side
value of the assignment.

def String varString := "This is my variable value."
//returns "This is my variable value."

Note: In models, you can define also global and local variables. Global variables are accessible from
the entire Model; local variables within the given resource, such as, a process or form. Mind you
cannot create global or local variables in the Expression Language; these are created in dedicated
model resources.

../pds/Variables.html

28 Local Variables

Chapter 7

Function Calls

Function calls are calls to function definitions which are special kinds of closures defined in a function definition:
Function definitions are model elements which cannot be created directly in the Expression Language; however,
you can call functions and use their return value in your expressions.

A function call follows the syntax

<FUNCTION_NAME>(<COMMA_SEPARATED_ARGUMENTS>)

or alternatively

<FUNCTION_NAME>(<PARAMETER_NAME_1> -> <ARGUMENT_1>, <PARAMETER_NAME_2> -> <ARGUMENT_2>)

Example function call:

getModel("Delivery", 1.4)
//alternatively:
getModel(name -> "Delivery", version -> "1.4")

If a function uses type parameters, their types are inferred. However, you can define the types explicitly if
required:

<FUNCTION> | <COMMA_SEPARATED_TYPES_PARAMETER_TYPES> | (<ARGUMENTS>)

The list of types in <COMMA_SEPARATED_TYPES> is used in the same order as the type parameters are defined.
Note that you need to define the types for all type parameters.

A function call is resolved into the function based on the call arguments: overloading is supported.

Call to a Standard Library function with the types of type parameters:

//collect has the E and T type parameters:
//E will be handled as Employee and T as Decimal:
sum(collect|Employee, Decimal|(e, {e -> e.salary}))

../pds/Functions.html#DefiningFunctions

30 Function Calls

Chapter 8

Controlling Flow

8.1 Branching

Branching serves to accommodate different reactions depending on a particular condition.

You can perform branching using the appropriate if construct or a switch. Note that the constructs represent an
expression block.

8.1.1 if-then-end

The if-then-end returns the value returned by the <expression> if the Boolean_expression is true and null if
the Boolean_expression is false.

if <boolean_expression> then
<expression>

end

Example

//sendInfo is a Boolean variable.
if sendInfo then

"Do send the newsletter."
end
//if sendInfo is false, the expression returns null (consider exception handling).

8.1.2 if-then-else-end

The if-then-else-end returns the value returned by <expression_1> if the Boolean_expression is true and
value returned by <expression_2> if the Boolean_expression is false.

if <boolean_expression> then
<expression_1>

else
<expression_2>

end

Example:

//passedTest is a Boolean variable.
if passedTest then

"Passed"
else

"Failed"
end

32 Controlling Flow

8.1.3 if-then-elsif-end

• If the boolean_expression_1 evaluates to false, boolean_expression_2 is checked.

• If boolean_expression_2 is true, expression_2 is evaluated, and the evaluation leaves the if con-
struct.

• If boolean_expression_2 is false, the next elsif expression is checked, etc. If none of the elsif Boolean
expression is true, expression_N is evaluated, and the evaluation leaves the if construct.

if <boolean_expression_1> then
<expression_1>
elsif <boolean_expression_2> then
<expression_2>

end

Example

//passedTest is a String variable.
if passedTest=="yes" then

"Passed"
elsif passedTest=="no" then
"Failed"

end

8.1.4 if-then-elsif-then-else-end

if <boolean_expression_1> then
<expression_1>
elsif <boolean_expression_2> then
<expression_2>

else
<else_expression>

end

Example:

//passedTest is a String variable.
if passedTest=="yes" then

"Passed"
elsif passedTest=="no" then
"Failed"

else
"Did not attend"

end

8.1.5 switch

The switch construct branches the execution flow based on condition value: it compares the argument expres-
sion against multiple possible values. If the value of the argument expression matches the value of the case, the
expression defined for that case is executed and the switch returns the value of the expression. Unlike in Java,
every case expression has an implicit break.

You can define a default expression that is executed if none of the cases matches is executed.

switch month
case "January" -> 1
case "February" -> 2
default -> "Not January nor February"

end

8.2 Looping 33

8.2 Looping

Looping serves to repeat the same or similar action.

Note that the looping constructs represent an expression block block.

8.2.1 for

The for loop, server to loop through a block of expressions, until a condition becomes true.

for(init; condition; update) do
expression

end

Example

def Integer i := 0;
for (i; i < 10; i++) do

debugLog({-> toString(i)}, 1000)
end

Important: Collecting results of foreach, for, and while in a collection so that you create a new
collection on each iteration as below, is inefficient and can cause performance issues (consider that
collections are immutable):

def Integer i := 0;
def Set<Integer> varSet := {};
for (i; i < 10; i++) do
//creates a new set with the i added and assigns it to varSet:
varSet := add(varSet, i);

end
//varSet will contain { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Use collect(), fold(), exist(), forAll(), etc. of the Standard Library instead. For
example:

collect(1..10, { x:Integer -> new Option(label -> "Option " + x, value -> "Value " + x) })
//instead of:
//def List<Option> options := [];
//foreach Integer x in 1..10 do
// options := add(options, new Option(label -> "Option " + x, value -> "Value " + x))
//end;
//options;

8.2.2 foreach

To iterate through items in a collection, use foreach:

foreach <type> <iterator_name> in <collection> do
<expression>

end

Example:

def Set<Person> persons := { ... };
~
foreach Person person in persons do

sendEmail("Important Notification", "", {} , {person.email}, {}, {}, "UTF-8");
end

../stdlib/re_modulecore_functions.html

34 Controlling Flow

8.2.3 while

To loop code while an expression is true, use the while construct:

while <boolean_expression> do
<expression>

end

8.2.4 break

In while, for, and foreach loops, you can use the break keyword to finish the looping immediately and continue with
the next expression.

def Integer i := 0;
for (i; i < 10; i++) do

if i = 3 then
break;

end
end

8.2.5 continue

In while, for, and foreach loops, you can skip the current loop with the continue keyword.

def Set<Person> persons := {};
~
foreach Person person in persons do

if isEmpty(person.email) then
continue;

end;
sendEmail("Important Notification", "", {} , {person.email}, {}, {}, "UTF-8");

end

Chapter 9

Exception Handling

On runtime, code can cause an error that halts the execution and potentially terminate the execution unexpectedly.
Typically, this can occur on user input, when the user input is unexpected (for example, while the code expects a
Decimal value and the user enters a value with letters). Exception handling enables you to deal with such situations
and handle the thrown exception gracefully.

To handle an exception, use the try-catch construct on the code.

Also, you can decide that a particular expression should produce an exception. To throw an exception, use the
error() function from the Standard Library.

9.1 Throwing Exceptions

The error() function throws an error with an error code. The error code is a String parameter of the construct.

error(<errorcode>)

Example:

error("InvalidISBNFormat")

If an error exception is not caught and handled, the execution terminates. The error can be caught and handled by
a try-catch block.

Important: Error throwing functions are part of the Standard Library. Refer to the Standard Library
Reference for further information.

36 Exception Handling

9.2 Catching Exceptions

To catch and handle error exceptions without interrupting the execution, use the try-catch block on the code which
might cause an exception:

try <expression>
catch <error_code>, ... -> <handle_expression_1>;
handle_expression_2;
...

end

Example:

try getCode()
catch "Invalid ISBN format", "Invalid ISSN format" -> "Code value is not valid."

end

If catch takes null, any error is caught. Note that the block returns an object and you might need to cast it as
appropriate:

try val.toDecimal()
catch null -> "not decimal" as String

9.3 Built-in Errors

The Expression Language makes use of the errors with the following error codes:

Error Description (occurrence circumstances)
∗NullParameterError∗ A mandatory parameter has the null value.

∗IncompatibleTypeError∗ The type of processed value is incorrect (typically on casting or assigning).

∗ArithmeticError∗ An operand in an arithmetic operation cannot be processed.

∗OutOfBoundsError∗ The collection element does not exist.
∗FormatError∗ The format of an argument is incorrect (for example, on casting of a String).

∗WrongSizeError∗ The size of a value is incorrect (for example, a String being cast to a map).

∗NoSuchPropertyError∗ The record property does not exist.

∗DoesNotExistError∗ The entity does not exist.

∗RecordNotFound∗ The record instance does not exist.
∗ReferenceNotFound∗ Dereferencing failure (Referenced value was not found.)

∗ModelInstantiationError∗ Instantiation of a model failed.
∗ModelInterpretationError∗ Model cannot be interpreted.

∗SendingError∗ Error sending failed.

∗SendingSignalError∗ Signal sending failed.

∗MergeEvaluationError∗ Evaluation context cannot be merged (refer to Forms User Guide).

∗BinaryDataError∗ Binary data cannot be retrieved (for example, from database).

∗ReadOnlyAccessError∗ The system attempted to write to a read-only object.

∗IncorrectPathname∗ The string with the path in invalid.

∗NoExternalRecordProvider∗ The resource with the requested external record is not available.

∗AmbiguousNameError∗ The provided name cannot be resolved to a unique entity.

Chapter 10

Model Elements

Expressions can access named elements defined in the model, which cannot be defined directly in the Expression
Language.

Such model elements include the following:

• Modules represent a structuring unit similar to a package and contain all the resources with model elements.
A module can use resources of another module only if it imports the module–similarly to packages in Java.
The module importing mechanism is described in the GO-BPMN Modeling Language guide.

If you want to reference an element from another module, the name of the entity must be preceded by the
module name and the :: operator.

<MODULE_NAME>::<ELEMENT_NAME>

• Functions are defined in a function definition file in a module.

To call a function from an expression, use the following syntax:

<FUNCTION_NAME>(<PARAMETER_1>, <PARAMETER_2>)

Note that parameters can be themselves expressions that return the data type defined as the parameter type.
If a function requires a parameter of the String data type, the parameter can be an expression that results in
a String object.

getName(getProcessName()+"#"+getId())

Note: Other elements are implemented as functions and are called in the same way. This includes
queries and forms.

• Variables from parent namespaces are defined in a variable definition file, or directly on the elements
representing the parent namespace, for example, a sub-process, a form, etc.

Variables from parent namespaces are referred to by their name with no special notation.

Note: When referencing variables from imported modules, use the namespace operator (::).
Further information on variables is available in the GO-BPMN Modeling Language Specification.

• Records and their fields are defined in a data type definition file.

Records are referred to by their name with no special notation. To access record fields, use the dot operator:
<RECORD_NAME>.<RECORD_FIELD>

• Constants are named values of a basic data type, the enumeration data type, or maps of the these data
types. After their value has been initialized, it remains unchanged during the rest of the runtime. Initialization
expressions of constants can use other constants.

Constants cannot be defined in the Expression Language directly. To call a constant in an expression, use its
name, for example, "This is the current date format: " + DATE_FORMAT.

../modeling-language/encapsulation.html#moduleimport

38 Model Elements

Chapter 11

Reserved Words

The following words are reserved words intended for future use:

• public

• private

• repeat

• until

• protected

• this

• super

• final

• abstract

• return

• static

• void

40 Reserved Words

	1 Expression Language
	2 Expressions
	2.1 Block
	2.2 Literals

	3 Data Types
	3.1 Data Type Mapping
	3.2 Casting
	3.3 Object
	3.4 Simple Data Types
	3.4.1 Binary
	3.4.2 String
	3.4.3 Boolean
	3.4.4 Integer
	3.4.5 Decimal
	3.4.6 Date

	3.5 Complex Data Types
	3.5.1 Collections
	3.5.1.1 List
	3.5.1.2 Set

	3.5.2 Map
	3.5.3 Reference
	3.5.4 Closure
	3.5.5 User-Defined Record
	3.5.6 Property
	3.5.7 Type
	3.5.8 Enumeration
	3.5.9 Null

	4 Operators
	4.1 Arithmetic Operators
	4.2 Assignment Operator
	4.3 Logical Operators
	4.4 Comparison Operators
	4.5 Concatenation
	4.6 Reference and Dereference Operators
	4.7 Inclusion Operator
	4.8 Namespace Operator
	4.9 Selector Operator
	4.10 Ternary Conditional
	4.11 Null-Coalescing Operator
	4.12 Access Operator
	4.13 Safe-Dot Operator
	4.14 Operator and Chaining Precedence
	4.15 Evaluation Order
	4.15.1 Chaining Expressions

	5 Comments
	6 Local Variables
	7 Function Calls
	8 Controlling Flow
	8.1 Branching
	8.1.1 if-then-end
	8.1.2 if-then-else-end
	8.1.3 if-then-elsif-end
	8.1.4 if-then-elsif-then-else-end
	8.1.5 switch

	8.2 Looping
	8.2.1 for
	8.2.2 foreach
	8.2.3 while
	8.2.4 break
	8.2.5 continue

	9 Exception Handling
	9.1 Throwing Exceptions
	9.2 Catching Exceptions
	9.3 Built-in Errors

	10 Model Elements
	11 Reserved Words

