l\ WHITESTEIN
L) Technologies

Living Systems® Process Suite

Business Activity Monitoring

Living Systems Process Suite Documentation

3.2
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1

Model Monitoring 1
1.1 Generating and Deploying Business Activity Monitor Example 3
1.1.1 Defining a Default Dashboard 4

1.2 Customizing Business Activity Monitoro o 5
1.2.1 Adding a Custom Widget witha Jasper Report 5

1.2.2 Adding a Custom WidgetwithaForm 6
1.2.2.1 Sending Parameters to a Form of a Custom Widget. 7

1.3 Creating Business Activity Monitor from Scratch o o 0o, 8
1.4 Configuring the Data Source for Reports 10
1.5 Working withthe Front End 11
1.5.1 Creating Dashboards 11
1.5.1.1 Publishing and Unpublishing Dashboards 11

1.5.1.2 Copying Dashboard 13

1.5.1.3 Renaming Dashboards 14

1.5.1.4 Deleting Dashboards 14

1.5.2 Displaying Widgets e 14
1.5.2.1 Changing Widget Parameters 15

1.5.22 RenamingWidgets 15

1.5.2.3 Exporting Reports to PDF, Word, orExcel 15

Chapter 1

Model Monitoring

To monitor runtime data use the Business Activity Monitor library. The library resources contain dashboards that
display widgets with Jasper Reports. The dashboards can be shared among users and users can set the parameters
for parametric reports.

Though the library is based on the forms module, its widgets support as their content also forms designed with the
ui module.

Important: The BAM library makes use of Vaadin Charts which are developed by Vaadin: make sure
to obtain the Vaadin Chart licenses before developing your own charts. Users of the your Application
User Interface and Management Console do not require any additional licensing.

When creating data for monitoring, consider using monitoring assignments and monitoring
flags.

PDS comes with an example implementation of the Business Activity Monitor so you do not need to develop every-
thing from the beginning. The example application comes with the following reports:

« Activity Running Time: how long it takes to complete a task (human or non-human)

Only complete tasks are included: Instances of a looped task are considered part of a single task.

Activity Running Time o o I & 2 X
Activity Running Time
Time period until now: 1 hour
Process: todoProc
Plan: -
Subprocess:
_mlmm
Check Outcome multi-instance 4 min 10.0 sec

Check Status 1 [i] 1] 1 4.0 sec

../modeling-language/modelingelements.html#monitoring
../modeling-language/modelingelements.html#monitoring

Model Monitoring

« Activity Utilization Ratio: how often an activity in a model was triggered in ratio to the number of the model's
instances

Activity Utilization Ratio ES R - £ B x
Activity Utilization Ratio
Time period until now: 1 hour
Process: paralielBranches
Plan:
Subprocess:
[
— S5
Se——.

| Confirm W Reject Sul:uprocessll

+ Model Instances by Status: bar chart with models indicating the status of their model instances

Each bar represents all instances of a particular Model and is color-coded to indicate portions of instances in
different statuses.

» Person Utilization by Task: instances of a task sorted for persons who completed (submitted) them
+ Plan Utilization Ratio: number of times individual plans of a goal were used to achieve the selected goal

» Process Running Time: average running time of finished process instances of the selected processes (note
that you can select multiple processes)

» Process Running Time Distribution: average running time of finished process instances of the selected
processes for a defined period of time

+ Started Model Instances: line chart with the number of instances of the selected models started during the
selected period

+ Started Process Instances: line chart with the number of instances of the selected Process started during
the selected period

» Users Activity Period: bar chart with times of activity of the front-end application users
The widget is only available if the user tracking.

+ Vaadin Chart Form: example widget with a form as its content

Important: Some BAM reports rely on the data provided by the process logs: The data is available
in the LSPS_PROCESS_LOGS table and the logging is governed by the CREATE_PROCESS_ L+«
OG server setting. Generally, the process logging should be disabled in production. If you are using

../server-deployment/serverparams.html#usertracking

1.1 Generating and Deploying Business Activity Monitor Example 3

BAM reports, consider setting CREATE_PROCESS_LOG to MODULE and disable the setting on all
modules where it is not necessary to prevent possible performance issues.

1.1 Generating and Deploying Business Activity Monitor Example

The example Business Activity Monitor application is a document with dashboards that can hold widgets with Jasper
Reports. The application is created with the bamLibrary Module.

To generate and deploy the default Business Activity Monitor, do the following:

1. Create a GO-BPMN Project that will hold the BAM Module.

Make sure the project contains the BAM Library (to add the library, right-click the project and click Add
Library, and use the Select built-in library option.)

2. Go to File -> New -> Example.
3. In the dialog box, select BAM Dashboard and click Next.

4. Select the target project and click Finish.
The system generates the bam Module with the application resources with the following resources:

« bam.docs: the document that creates the form with the dashboards

» Reports: directory with resources of individual widgets:

Jasper Report displayed in the widget
form definition of the dialog where the user changes the report parameters

method definition with the methods for the widget including the getParameters() and methods that
return parameters for the report

other resource, such as, localization, query definitions, etc.

5. Make sure your server connection is up and running.

6. Upload the bam Module (right-click the Module, click Upload As, and Model).

7. To access Business Activity Monitor, log in to the Application User Interface, go to Documents and open the

Business Activity Monitor document.

DOCUMENTS

TO-DO LIST

DOCUMENTS

RUN MODEL

Figure 1.1 Opening BAM document

In the document, you can create your dashboards or display public dashboards with their widgets. Note that
when you add a widget to your dashboard it remains empty: Define the report parameters to display data in
a report.

4 Model Monitoring

BUSINESS ACTIVITY MONITOR

Tasks Monitor Process Monitor ® Z 9+ I @& @
Process Monitor))
Process Running Time c & I 2 2 x
+ Add dashboard

Time period until 1 year

Process Started| Active| Interru| Comple Avemge|
restServer-1.0::RestServer (6000) 1 1 0 0 null|

Started Model Instances

Q
)

I &£ 20 %

ol
Nov-2015 Jan-2016 Mar-2016 May-2016 Jul-2016 Sep-2016
restServer-1.0 (Oct 16, 2016 1:11:00 PM) — wsdIClient-1.0 (Oct 16, 2016 1:11:04 PM)
wsdlServer-1.0 (Oct 16, 2016 1:11:08 PM) wisdlS erverGenerated-1.0 (Oct 16, 2016 1:11:13 PM)

Figure 1.2 Business Activity Monitor with a private dashboard displayed

1.1.1 Defining a Default Dashboard

To define a default dashboard that will be available to every user, do the following:

1. Create an executable module that will import the bam module.

2. Create a resource that will create the default dashboard, for example, a process with the code in an assign-
ment of a process element. As part of the code, you need to do the following:

» Create or obtain the BAM users that should have the dashboard.
+ Create the dashboard as a DashboardData object with its widgets.
» Add the dashboard to the list of the user's dashboards as a DashboardOrdexr object.

//The dashboard is made available to the current user:
def BAMUser bamUser := getOrCreateCurrentBAMUser () ;
//The dashboard instance with no widgets:
def DashboardData newDashboard :=

new DashboardData (
name -> "DefaultPublicDashboard",
author -> bamUser,
isPublic -> true

)

newDashboard.widgets := [];
def TimePeriodParameter timePeriod := getParameterTimePeriod(l);
def Set<ModelParameter> allModels := findParameterModels () .toSet();

def Set<Integer> modelIds := collect (allModels, {model:ModelParameter -> model.id});

1.2 Customizing Business Activity Monitor 5

def WidgetData startModelInstancesWidget := new WidgetData (
name -> "Started Model Instances",
moduleName -> "hll-reports",
caption -> "Started Model Instances",
x —-> null,
y —> null,
height -> 4,
width -> 3,
state -> null,
parameters —-> [PARAM_TIME_PERIOD -> timePeriod.name,
PARAM_TIME_PERIOD_ID -> timePeriod.id,
PARAM_MODEL_IDS -> modelIds]
)i
newDashboard.widgets := add(newDashboard.widgets, startModelInstancesWidget);
//Add the dashboard to the list of dashboards:
new DashboardOrder (dashboard -> newDashboard, user —-> bamUser)

3. Run the module.

1.2 Customizing Business Activity Monitor

To create a custom Business Activity Monitor, we recommend to start from the example Business Activity Monitor
application. However, you can create your Business Activity Monitor application from scratch as well.

1.2.1 Adding a Custom Widget with a Jasper Report

Important: If you are modifying or reusing the example Jasper Reports or creating a new report that
will use a template of styles (in the example application it is LspsStyle. jbtx template), do not
use Jaspersoft® Studio 6.3.1 since it remains hanging due to an issue when loading the common style
template.

To add a custom widget that will display a Jasper Report to the Business Activity Monitor, do the following:

1. In the Reports folder of the bam module, create a folder for your widget.

Alternatively create the widget resources in a separate Module and import it into the bam Module.

2. Copy the Jasper Report into the folder and refresh the folder (select the folder in GO-BPMN Explorer and
press F5).

3. Create a form that will allow the user to define the report parameters:

« Typically you will use input components, such as Combo Box, Input Field, etc. Make sure to define IDs
for the input components, so you can acquire their value with the getParameters() method.

» Create a local variable of the ReportFrame type: the variable will hold reference to the ReportFrame
with the report when changing parameters.

» Create a component that will apply the parameters on the ReportFrame and refresh it, typically you will
use a button with the action defined as its click action:

{ _ —>
reportFrame.setParameters (getParameters());
reportFrame.refresh ()

}

4. In the methods file of your parameter Form, define the following methods:

6 Model Monitoring

« constructor with ReportFrame as its input parameters

public MyWidget (ReportFrame reportFrame) {
this.reportFrame := reportFrame

}

» getParameters() method, that will return the new parameters: The report parameters are defined as a
map of parameter names and their values.

private Map<String, Object> getParameters() {
//load the value from the input component into a local variable:
def String newParameterValue := myInputField.getValue();

//return the values mapped to their report keys:
[
"jasperReportParam" -> newParameterValue
]
}

» showReport() method that will display and update the report.

private void showReport () {
Forms.navigateToUrl (embeddedJasperReportUrl (thisModel () .name,
"Reports/myReport.jrxml", getParameters()))

5. In the bam.docs, add the widget to the BamDocument UlDefinition:

new BamApplicationForm(new BamConfiguration (widgets ->|[
new WidgetDefinition (
name —-> "My Widget",
moduleName —-> thisModel () .name,
reportWidget —-> new ReportWidget (designPath -> "Reports/MyWidget/myReport. jrxml"),
parametersForm —-> {reportFrame:ReportFrame -> new MyWidget (reportFrame) },
defaultParameters -> [->],
width -> 3,
height -> null

1.2.2 Adding a Custom Widget with a Form

To add a custom widget that will display a Form definition as its content, do the following:

1. In the Reports folder of your bam module, create a folder for your widget.

Alternatively you can create the widget resources in a separate Module and import the Module into the bam
Module.

2. In the folder, create the form definition that will be used as the content of the widget.

3. Set the supertype of the form to bamLibrary: :FormContent.

1.2 Customizing Business Activity Monitor 7

% GO-BPM 0= Outline 32| = O | [zl MyReportForm.form 52
= I =R B W @ ©[100% w|liv 1! v A v NefaultFant v + v - v # 4 4
Tree| Overview MyReportForm .
- -- — % [m 0O o
~ [vertical Layout & | Av "Report parameter: "5
Ay Label [O in}

Form| Methods

[Properties 2 | Problems €] ErrorLog 4’ Search & Console " v =8
Form : MyReportForm
* Detail Name: MyReportForm Public: status: [v
| RV LibranFormcontend Define...
® Interfaces:
Description:
Connection: LSPS Embedded Server (admin) P LSPS News

4. Add the widget to the Bam document:

(a) In GO-BPMN Explorer, select the bam.docs definition.
(b) In the document editor, select BamDocument.

(c) In the Ul definition property, add the WidgetDefinition with the content of the form widget: form«
Widget -> new FormWidget (reportForm -> { widgetData:WidgetData ->
new <MYFORM> () })

new WidgetDefinition (
name —-> #"Simple Widget with a Form",
moduleName -> thisModel () .name,
formWidget -> new FormWidget (reportForm -> { widgetData:WidgetData -> new WidgetForm() })

1.2.2.1 Sending Parameters to a Form of a Custom Widget
To define the default parameters and parameter-input form for a widget with a form, do the following:

1. Define your default parameters of the WidgetDefinition as a map and make the form take the default values
of widget parameters. Alternatively, pass the WidgetData object as its input parameter: the object holds the
parameter values for the widget.

new WidgetDefinition(
name -> #"Simple Widget with a Form",
moduleName -> thisModel () .name,
defaultParameters -> ["widgetParameter" -> "default param"],
formWidget ->
new FormWidget (
reportForm -> { widgetData:WidgetData -> new EkoForm(defaultParameterValue) }

(a) Create a parametric constructor with the parameters and set them as value on the respective compo-
nents

public EkoForm(String defaultParameterValue) {
label.setValue (defaultParameterValue) ;

}

(b) Implement the refresh () method on the form that will refresh any components that depend on the
parameters.

Model Monitoring

public void refresh (WidgetDefinition widgetDefinition,

this.widgetData := widgetData;

if label != null then
label.refresh();

end

}
2. Create the form for parameter setting:

(a) Design the parameter form with input components for parameters.

WidgetData widgetData,

(b) Create a local variable of type ReportFrame: the variable will hold the ReportFrame object passed from

the WidgetDefinition object.

(c) Create a parametric constructor with a ReportFrame argument and store it in a local variable.

public ParameterInputForm (ReportFrame rf) {
reportFrame := rf;

}

The ReportFrame will serve to apply parameter values in the widget. Hence
eter values are reflected back in the parameters map of the ReportFrame.

reportFrame.widgetData.parameters := ["widgetParameter"

make sure that the param-

—-> myParameterValue]

(d) Addthe refresh () call on the report frame from your form to apply the parameter values and close

the popup with the parameter form.

(e) Inthe UlDefinition property of the bam Document, define the parametersForm property of your Widget«—
Definition: note that this is a closure with the ReportFrame of the WidgetDefinition as its input argument.
Create the parameter form with the report frame as its parameter. (The report frame holds all the data

for your widget instance).

new WidgetDefinition (
name -> #"Simple Widget with a Form",
moduleName —-> thisModel () .name,

Popup pars

parametersForm —-> {reportFrame:ReportFrame —-> new ParameterForm(reportFrame) },
defaultParameters -> ["widgetParameter" -> "default param"],

formWwidget ->
new FormWidget (reportForm ->
{ widgetData:WidgetData —-> new EkoForm(widgetData)
)

1.3 Creating Business Activity Monitor from Scratch

}

To create a Business Activity Monitor from scratch only using the bamLibrary Module, you will need to implement

the widgets and then create a document with the Bam application:

1. Import the bamLibrary Module into your Module (Right-click Module > Module Imports; in the dialog box,

click Add and double-click bamLibrary).
2. Create the widgets:

(a) Copy the JasperReports for your widgets into the Module.

(b) Create the parameter form that will allow you to change the parameters of the report:

i. Create a Form definition.

ii. Insert components that will allow the user to define new parameter values. Make sure to define IDs
on the component so you can acquire their values when setting new report values in the get «

Parameter () method later.

iii. Create a local form variable of type ReportFrame: the ReportFrame object will allow passing of

parameters from the form to the report.

1.3 Creating Business Activity Monitor from Scratch 9

iv. Declare the constructor of the Form that will take the ReportFrame object as its member variable.
public MyParamForm (ReportFrame reportFrame) {this.reportFrame :=
reportFrame}

v. Create the getParameter () method for the parameter form: it must return a Map of the pa-
rameters and their new values.

public Map<String, Object> getParameters() {
def String newParameterValue := MyParamInput.getValue();
["myParam" —-> newParameterValue]
}
(c) Create a component, such as a Button, that will send the new parameters to the ReportFrame and
refresh the report:

i. Inthe parameter form, insert a component that will send the data.
ii. Define the send logic and refresh of the report, for example, you can create a Button with a Click

Listener:
{ e —>
if reportFrame == null then

Forms.navigateToUrl (
embeddedJasperReportUrl (
thisModel () .name,
"myReport.jrxml",
getParameters ()

)
else
//set the new report parameters from the ReportFrame:
reportFrame.setParameters (getParameters());
//Display the report:
reportFrame.refresh ()

end
% GO-BPMN Explorer &2 B v=n0 -5
@ BAMFridayslast " N i
on t“tays o 8 Mywidget.form 5 |) myReport jrxml () Mywidget.methods &3
amtes! .
'y) N Def . Mywidget {
@ BamwithCustomwidget S TE MR ® & | 100% v |l l> 11~ A v DefaultFont ~ /
v customaam private void preCreatewidget() {
4 & Auto-generated method stub =
» =\ BAM Librar)f)) u 9 ated d stu
» =) Exchange Client Library i) "nweparam

» & Scaffolding Library private void postCreatewidget() {

i — fz -
» = sharepoint Client Library T apply E) ito-generated method stu

» =i social Library
» 2 Standard Library public Map<String, Object> getParameters(){
° def String newParameterValue := NewParameterValue.getValue();
v @ customam 1.0 [“nyJasperparan” -> newParametervalue]
v& Module Imports
& bamLibrary
& core
& forms
& human
& ui
v Reports
v Mywidget
= myReport jreml Form| Methods
|2l Mywidget.form
1) Mywidget.methods
2 customBam.docs =

public MyWidget (ReportFrane reportFrane) {this.reportFrane := reportFrame}

(E4

[properties 52 [2] Problems & Console

*Detail "ID: Modeling Id: | _bGrYQURDEeaFFMxioYgXqA

® Caption: “Apply Parameter” Edit...
(string)
8= outline %2 EB&» =0
Tree| Overview
~ 8 Mywidget

v [fl Vertical Layout
I Text Field ID=NewParameterValue
SButton

P click Listener: (e > Edit...
({Forms::ClickEvent : void}) =~ if reportFrame == null then
Forns.navigateTourl (embeddedJasperReporturl (thistodel () .name,
“myReport.jrxnl”, getParameters()))
else
set t eport parameters om the ReportFrame
reportFrame.setParameters (getParameters());
Display the re
reportFrane. refresh()
nd

Figure 1.3 Parameter widget definition with the ReportFrame local variable and added methods
highlighted; also not the Apply button Click expression in the Properties view

3. Create the BAM application:

10 Model Monitoring

(a) Create a document: this will be your BAM document.

(b) Define the properties of the Document and define the Ul definition as the BamApplicationForm ()
with a BamConfiguration as its parameter.

« BamConfiguration holds a list of WidgetDefinitions of widgets available for the Dashboards of the
BamApplicationForm;
» WidgetDefinitions define the available Widgets and their properties:
— name: name of the Widget
— module name: name of the parent Module
— designPath: path to your report relative to the module
— parametersForms: form that is used to collect parameters for the report via ReportFrame (if
undefined, no param settings available)
— defaultParameters - default parameters for the report
— width: default width of the widget
— height: default height of the widget

new BamApplicationForm(
new BamConfiguration (
widgets —-> [
new WidgetDefinition (
name -> "My BAM Dashboard Widget",
moduleName -> thisModel () .name,
//We pass the ReportFrame with data about the Widget to the parameter form:
parametersForm —> {
reportFrame:ReportFrame —-> new MyParameterForm(reportFrame)
}y
defaultParameters -> [
"myWidgetParam" -> "Default parameter value for my report."
1,
designPath -> "myJasperReport.jrxml",
width -> 4,
height -> 4

You can now deploy the Module with your custom BAM to the LSPS Server.

1.4 Configuring the Data Source for Reports

By default, reports use data from the LSPS_DS data source. To use data from another data source, do the
following:

1. Create the data source to your database on your server with LSPS: refer to the documentation of your appli-
cation server.

Example datasource configuration on WildFly

<xa-datasource jndi-name="java:/jdbc/REPORT_DS" pool-name="REPORT_DS" enabled="true" use-jav

<xa—-datasource-property name="URL">
<!--For WF 10 and newer: —-—>
jdbc:h2:tcp://localhost/./h2/reports; MVCC=TRUE; LOCK_TIMEOUT=60000

<!-—for previous WF: jdbc:h2:tcp://localhost/./h2/reports;MVCC=TRUE; LOCK_TIMEOUT=60000-->

</xa-datasource-property>
<driver>h2</driver>

1.5 Working with the Front End 11

<transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>

<xa-pool>
<min-pool-size>10</min-pool-size>
<max-pool-size>20</max-pool-size>
<prefill>true</prefill>

</xa-pool>

<security>
<user-name>lsps</user-name>
<password>lsps</password>

</security>

</xa-datasource>

2. Inyourreports, set the report property com.whitestein.lsps.monitoring.datasource-jndi-name
to the data source, in the example above, REPORT_DS:

In Jasper Studio, open your report.

In the report Outline view, click the root component.

)
)
¢) Inthe Properties view of the root component, click the Advanced tab.
) Under the Misc node next to the Properties item, click

)

In the popup, enter the property name com.whitestein.lsps.monitoring.datasource-jndi-name
and the value with the JNDI name of the data source, in the example, java:/jdbc/REPORT_DS.

3. Design your report.

1.5 Working with the Front End

1.5.1 Creating Dashboards

Dashboards are spaces that display widgets with Jasper Reports or forms. By default, a dashboard belongs to the
user who created the dashboard and cannot be accessed by other users unless the dashboard is marked as public.

To create a new dashboard, do the following:

1. Click Add dashboard.
2. In the dialog on the New dashboard tab, define the dashboard name.
3. Select the Public checkbox if applicable.

4. Click Add.

The dashboard appears in the list of dashboards above the Add dashboard button.

1.5.1.1 Publishing and Unpublishing Dashboards

To change the setting of the public flag on your Dashboard, click the respective button in the Dashboard caption.

12 Model Monitoring

BUSINESS ACTIVITY MONITOR

Tasks Monitor Tasks Monitor

+ Add dashboard

Person Utilization by Task

Activity Running Time

Q
L]
o=
[
[1]
[+]
x

Time period until null
Process: null
Plan:

Subprocess:

Activity | St/mted| Af.tive| Inten'u‘ Comple| Ave

Figure 1.4 Publishing a private dashboard

1.5.1.1.1 Adding Public Dashboards

To add a public dashboard created by another user to your BAM, do the following:

1. Click the Add dashboard button.

2. In the popup, select the Public dashboard tab and select the dashboard in the combo box.

3. Click Add to confirm.

The public dashboard appears in the list of dashboards above the Add dashboard button. Note that public dash-
boards created by other users are read only.

1.5 Working with the Front End 13

Dashboard * ‘ |

Tasks Monitor
s

Figure 1.5 Adding a public dashboard

1.5.1.2 Copying Dashboard
Since the user can edit only the dashboard they created, it is convenient to be able to copy dashboards.
To create a copy of a dashboard, click the Copy button in the caption of the dashboard.

BUSINESS ACTIVITY MONITOR

Task Monitor Task Monitor

Process Monitor

Person Utilization by Task
+ Add dashboard

Person Utilization by Task

Time period until now:
Process:
Activity:

1

I & 20 x

= 2

Activity Running Time

Activity Running Time

Figure 1.6 Copying dashboard

14 Model Monitoring

1.5.1.3 Renaming Dashboards

To change the caption of your dashboard, click the Rename button (Jr) in the dashboard caption.

Note that you cannot edit public dashboards.

1.5.1.4 Deleting Dashboards
To delete a dashboard, do one of the following:

+ Right-click the dashboard button in the Business Activity Monitor document and click Remove in the context
menu.

BUSINESS ACTIVITY MONITOR

Task Monitor ‘ Process Monitor

Process Manitm

+ Add dashboard

+ Click the Delete button in the dashboard caption.

Note: When you delete your public dashboard, the dashboard will no longer be available to any users.

1.5.2 Displaying Widgets

BAM widgets are components with Jasper Reports that are displayed on a dashboard. Widgets can take parameters
that are then used by the Jasper Reports.

To display a widget on a dashboard, do the following:

1. Open the dashboard.
2. In the caption of the dashboard, click the Add (+) button in the caption of the dashboard.

3. In the dialog box, select the widget and click Add widget.

1.5 Working with the Front End 15

On your dashboards, you can drag-and-drop the widgets and resize them as required. On public dashboards, the
positions and dimensions are fixed.

Task Monitor

Activity Running Time c o I &2 B ®

Activity Running Time

Time period until now:
Process:

Person Utilization b'_y-Tas% c a4 I & 20x

Figure 1.7 Dragging a widget

1.5.2.1 Changing Widget Parameters

To change parameters used by a widget, click the Settings button in the widget caption and set the parameters in
the popup box. If the report does not require any parameters, the button is not available.

BUSINESS ACTIVITY MONITOR

Tasks Monitor myprivate ® 2 + I & @

myprivate
o« I 2 2 Model o] '& I L 2 ®
+ Add dashboard

Time period until Time period until null

Process:

Pl 105
an: 100

Subprocess: 085

0.90 {
0.85

This chart contail

Figure 1.8 Edit parameters button in the widget caption

1.5.2.2 Renaming Widgets

To change the caption of a widget displayed on your dashboard, click the Rename button (Jf) in the widget
caption.

Note that you cannot edit public dashboards.

1.5.2.3 Exporting Reports to PDF, Word, or Excel

To export the report displayed in a widget, click the export button Lin the caption of the widget and select the target
format.

16

Model Monitoring

	1 Model Monitoring
	1.1 Generating and Deploying Business Activity Monitor Example
	1.1.1 Defining a Default Dashboard

	1.2 Customizing Business Activity Monitor
	1.2.1 Adding a Custom Widget with a Jasper Report
	1.2.2 Adding a Custom Widget with a Form
	1.2.2.1 Sending Parameters to a Form of a Custom Widget

	1.3 Creating Business Activity Monitor from Scratch
	1.4 Configuring the Data Source for Reports
	1.5 Working with the Front End
	1.5.1 Creating Dashboards
	1.5.1.1 Publishing and Unpublishing Dashboards
	1.5.1.2 Copying Dashboard
	1.5.1.3 Renaming Dashboards
	1.5.1.4 Deleting Dashboards

	1.5.2 Displaying Widgets
	1.5.2.1 Changing Widget Parameters
	1.5.2.2 Renaming Widgets
	1.5.2.3 Exporting Reports to PDF, Word, or Excel

