l\ WHITESTEIN
L) Technologies

Living Systems® Process Suite

LSPS Tutorials

Living Systems Process Suite Documentation

3.2
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 Main Page 1
2 Forms Tutorials 3
21 Chart . . o e e 3
211 CreatingaDonutChart 3

2.1.2 CreatingaBarChart e 5
2.1.2.1 Setting Category as X Axis Values 6

21.3 CreatinganAreaChart 7
2.1.3.1 Creating an Area Chart with Time X Axis 7

21.4 CreatingalineChart e 8

2.2 \Validatinga Record fromaForm 9
221 LogConfirmationof Order 14

23 CRUDGrId oo e 16
2.3.1 Creating Database Data e 16
2.3.2 Creatingthe Form. 18
2.3.3 Adjusting Presentation 21
2.3.4 Creatingthe Document L 22

2.4 Validation of Multiple Components 22
25 Editing Grid Dataina Popup e e 24
251 Creatingthe PublicPopup 24

252 Usingthe PublicPopup 26

2.6 Filter over Grid and Table with a Custom Data Source 27
2.6.1 Creatinga CustomDataSource i 28

2.6.2 Creatingthe Form. e 29

CONTENTS

3 Ul Forms Tutorials

3.1 Editable Table L
3.2 Tablewith Derived Values
3.3 Calendar with Adding Entries Functionality
3.4 Pop-up with Save and Cancel Buttons

4 Process Tutorials

4.1 Agile Processes e e
4.1.1 Designingthe Skeleton oL

4.1.2 DesigningOmitting L
4.1.21 Real-World Adaptations,

4.1.3 Designing Deactivation
4.1.4 Designing Activation L
41.41 Real-World Adaptations

4.2 Creating a Model Instance from Document and Navigating to its To-Do on Submit

5 Data Model Tutorials

5.1 Creating Custom To-DoList,
5.1.1 Creatingthe DataModel,

5.1.2 CreatingtheTodoltems
5.1.2.1 Creating the Form forthe To-Do

5.1.3 Creatingalistof Todoltems
5.1.4 Adding the Custom To-Do List to the Navigaton Menu

5.1.5 Localizing Name ofthe Menultem L.
5.1.6 Excluding the Todo ltems Document from Documents

5.2 \ValidatingaRelatedRecord

6 Model-Update Tutorials

6.1 Model Update Examples
6.1.1 Updatinga Variable Value
6.1.2 Updatinga Task Parameter
6.1.3 UpdatinganEventType
6.1.4 UpdatingaDataType

7 Deploy LSPS Application on a Local Server

7.1 Settingup Local MySQL Database
7.2 SettingupLocal WildFly

7.3 Connecting to Local WildFly fromPDS

Chapter 1

Main Page

A series of complete tutorials that focus on different goals you might want to achieve in your models:

» Forms Tutorials and Ul Forms Tutorials to help you create the GUI you require
» Process Tutorials with design patterns for your business processes
» Data Model Tutorials with solutions for your data models and related issues

* Model-Update Tutorials

Main Page

Chapter 2

Forms Tutorials

Important: These tutorials use the experimental forms module. To use fully supported charts, use the
ui module for your forms.

» Chart

« Validating a Record from a Form

« CRUD Grid

« Validation of Multiple Components
* Editing Grid Data in a Popup

« Filter over Grid and Table with a Custom Data Source

2.1 Chart

Important: This tutorial uses the experimental forms module. To use fully supported charts, use the ui
module.

You can download an example implementation here. To import it to your workspace, go to Import > Exist-
ing Projects into Workspace; select Select archive file and locate the charts.zip file and select
ChartTutorial.

2.1.1 Creating a Donut Chart

A donut chart is a special case of the pie chart: the pie slice series have the inner size plotting property larger than
0 and a custom size.

To create a donut chart, do the following:

1. Insert a pie chart component into the form.

2. Define the data series: you can do so either in the Pie slice series property in the Properties view of the Pie
Chart or using the addPieSliceSeries() method.

../ui-vaadin/index.html
../media/tutorials/models/charts.zip

Forms Tutorials

def PieSliceSeries innerSeries := new PieSliceSeries("Inner Slice Series", [
new forms::PieSlice("Big slice", 10),
new forms::PieSlice("Small slice", 10)

)
def PieSliceSeries middleSeries := new PieSliceSeries ("Middle Slice Series", [
new forms::PieSlice ("Another small slice", 30),
new forms::PieSlice ("Another small slice", 20),
new forms::PieSlice ("Another big slice", 50)

)i
def PieSliceSeries outerSeries := new PieSliceSeries ("Outer Slice Series", [
new forms::PieSlice ("Another small slice", 30),
new forms::PieSlice ("Another small slice", 20),
new forms::PieSlice ("Another big slice", 50)
]
)
//The dataseries as rendered in the order (z—-index) as in the returned list
// (outerSeries is the lowest):
[outerSeries, middleSeries, innerSeries]

3. Define the required inner size and total size in the plotting options for each series.

def PlotOptionsPie middleSeriesPlotting := new PlotOptionsPie(
//inner border at the perimeter of the chart:
innerSize -> new AttributeSize ("20%"),
size -> new AttributeSize ("60%"),
startAngle -> 90, borderWidth -> 2);
innerSeries.plotOptions := middleSeriesPlotting;
[outerSeries, middleSeries, innerSeries]

2.1 Chart

Donut Chart

Another big slice

Another small slice —

Another small slice

nother small slice

lL___——’— Another small slice

2.1.2 Creating a Bar Chart
To render a data series as a bar chart, do the following:

1. Insert the Cartesian Chart component into your form.
2. Define its data series in its Properties view.

3. Setthe plotOptions property of the data series to P1lotOptionColumn.

myDataSeries.plotOptions := new PlotOptionsColumn (
datalabels —-> new Datalabels (formatter -> "this.y"),
color -=> new Color (0, 255, 150));

Note that CategoryDataSeries are plotted as bar charts by default.

Example TimeDataSeries plotted as a bar chart

def TimeDataSeries tds := new TimeDataSeries ([
new TimeDataSeriesItem(now(), 1, 3),
new TimeDataSeriesItem(now()+seconds(3), -1, 5),
new TimeDataSeriesItem (now()+seconds(5), 2, 7)]
)
tds.plotOptions := new PlotOptionsColumn (range -> true);

[tds]

6 Forms Tutorials

BARCHART
Chart title

60

50

40

o 30
3
(]

= 20

0

-10

0 1 2 3
M series 1

2.1.2.1 Setting Category as X Axis Values

To use the category name as the x axis values, set the X Axis to an Axis with category —-> []. You can do so
directly in the X Axis field on the Detail tab of the Properties view or anywhere with the addXAxis() method of the
chart.

c.addXAxis (new Axis(categories -> []))

BARCHART
Chart title
60
50
40
P 30
=
(]
> 20
0
-10
2014 2015 2016 2017
M series 1

If you need to override some of the category names, define the names in the categories list of the chart; for ex-
ample, c.addXAxis(new Axis (categories -> ["Year 2014", null , "Year 2016"]))
overrides the category names of the first and third item.

2.1 Chart

2.1.3 Creating an Area Chart

To render a data series as an area chart in the Cartesian Chart, set its plot options to PlotOptionsLineArea.

def CategoryDataSeries cds := new CategoryDataSeries (
[
new CategoryDataSeriesItem("first", 1, 4),
new CategoryDataSeriesItem("second", -1, 2),
new CategoryDataSeriesItem("third", 0, 3)
]
)i
cds.plotOptions := new PlotOptionsLineArea (spline —-> true, range —> true);
[cds]

AREACHART

Chart title

50

40

30

Values

20

10

-10
0 0.2 0.4 0.6 08 1 12 14 16 1.8

I series 1

2.1.3.1 Creating an Area Chart with Time X Axis

To create an area chart that will have time axis, use the TimeDataSeries in the Cartesian Chart and set the type of

the X axisto AxisType.datetime.

8 Forms Tutorials

|zl RangeWithTime.form 231 |z CategeryWithTimeAxis.form = 0
wvE @y Y @ @[100% v|l iv 11w A v DefaultFant v ~ w . w # & J

RangeWithTime q
e |

Form | Methods

[Properties % [Problems €] Error Log 4’ Search & Console M ¥ =0

il Cartesian Chart

* Detail ®ID: (| Modeling Id: [_nji8Fz9EeeHH3IyF3PCUg
-“Caption: Edit...
(string) T
P Title: Edit...
(5tring) E—
P subtitle: Edit..
(string) .
P Data series: i Edit...

i - i new TimeDataSeries([
< o =] < >
(List<forms::Dataseries>) new TimeDataSeriesItem(d'2015-12-24 20:00:00.000', 1, 2),
new TimeDataSeriesItem(d'2015-12-25 20:00:80.000', 1, 3)
1
)

Xaxis: new Axis('type' -> AxisType.datetime) Edit.
(Forms::Axis)
Py axis: Edit...

(Forms::Axis)

2.1.4 Creating a Line Chart

By default, ListDataSeries are rendered as line charts. If you want to plot another series type as a line chart, set its
plot options to PlotOptionsLine.

cds.plotOptions := new PlotOptionsLine(spline —-> true);
[cds]

2.2 Validating a Record from a Form

LINECHART
Chart title

10

2 25 3 3.5 4 45 5

0
0.5 1
-»- Series 1

2.2 Validating a Record from a Form

In this tutorial, you will:
* create a page that will add an entry to the database and log the event,

+ validate values of a record defined as user input in a form, and

- start a process when a user performs some action on a page.

Requirements:

+ Create an order based on user input.
» Make sure the user enters all data in the correct format.

» Make sure the order is persisted only after the user submits it.
Important: This tutorial uses the forms Module to implement the GUI. This module is experimental
and the resulting form is not compatible with the ui Modules, which is the previous and supported

implementation.
Create a structure with the xorder-placing module:x

1. Open the Modeling perspective.

2. Go to File -> New -> GO-BPMN Project.
3. In the pop-up enter the project name OrderProcessing and click Next.

4. In the Module name field, enter order-placing and click Next.

10 Forms Tutorials

5. In the imports dialog:

(a) Import the forms module: click Add, expand the Standard Library node and double-click forms.
(b) Remove the ui module.

6. Click OK and Finish.
Create the data structure that will represent the Order:

1. Right-click the order-placing Module and go to New -> Data Type Definition.
2. Click Finish in the dialog box.

3. Right-click the canvas in the opened graphical editor and select Shared Record.

|l order-placing.dataktypes &2

=]

S ® 2 |100% B
& Main

Record

Shared Record

Record Import...

Enumeration

Text Annotation

Copy Ctrl+C

Copy Qualified Name Diagram Hyperlink
URL Hyperlink
Element Hyperlink

Resource Hyperlink
Diagram Frame

Line Style b
Layout

ShowIn Shift+Alc+w v
Search For r

Figure 2.1 Creating Order shared Record

4. Name the Record Order.
5. Select the Record and press Insert to insert a field into the Record. Define the following fields:

* item of type String
* price of type Decimal

Create the form for the Order page:

1. Import the forms module.

2.2 Validating a Record from a Form 11

2. Right-click the order-placing Module and go to New -> Form Definition.

3. Enter the name of your form OrderForm and select Use FormComponent-based Ul to use the forms
module.

4. Create a form variable for the new order:

(@) In the Outline view, right-click the root node and go to New -> Variable.
(b) Inits Properties View, define the variable properties:
* Name: order
« Type: Order
(c) Switch to the Methods tab and define a non-parametric form constructor that initializes the order variable
to new Order ().

5. Inthe Form tab of the editor, insert the following components as displayed below and define the components'
properties in their Properties views.

» Form Layout
» Text Field with properties:
— ID:itemField
— Caption: "Item:"
— Binding: Reference to the field of the order variable sorder.item
» Decimal Field with properties:
— ID:priceField
— Caption: "Price:"
— Binding: Reference to field of the order variable sorder.price
« Button:

— ID: createButton
— Caption: "Place Order"
— Click Listener: Submit on click {e—> Forms.submit (); }

%. GO-BPMN Expl |7 Outline 82 = O || [0 order-placing-test.datatypes |z orderForm.form 2 = 0
H B & 3| = it v 9 @ @[100% v |1 w11 A v DefaulrFant ’ »
Tree| Overview q
~BE orderForm
o order: Order €] “em description: *
'|::!Fcrm L?yOUt . . “ltem price: " ’7
IO Text Field ID=itemField
=5 Decimal Field
= Button ID=createButton
Form | Methods
[Properties % [f. Problems "t ¥ = 8
=
* Detail ®Ip: createButton Modeling Id: [createButton_ 80134E0SEeehfuHQogsK1A
- coion: ‘Place Order® Edit...
(string)
? Click Listener: fle-> Forms.submit(); } Edit...

({Forms::ClickEvent : void})

Define the Order page as a document:

1. Right-click the order-placing Module and go to New -> Document Definition.

T —

12 Forms Tutorials

2. In the editor with the docs file, click Add and define the name and title of the document on the right.
3. Define the page content in the UIDefinition:
new OrderForm();
Currently you have a runnable model. When you run it and open the document, an order entry id created and
persisted in the database: this happens when the order variable is instantiated. However, we want to create the
entry only later after the order data has been validated. This problem can be solved with change proxies: Change

proxies are intended to hold preliminary versions of shared records: their values are not persisted automatically.
To persist the values and create the actual shared record, you need to explicitly merge the proxy.

1. In the form constructor, initialize the order variable as a change proxy over the shared-record type: call
proxy (Order).

public OrderForm() {
order := proxy (Order);

}

2. Define the merge of the proxy object in the Click Listener expression of the createButton:
{ e —>
mergeProxies (false, order);

Forms.submit ()

}

3. Add a Cancel button that will navigate away from the screen, for example, { e -> new App+«
Navigation(code -> "todoList") }.

You still need to make sure that the user enters the required values into their order: Define constraints for the fields
of the Order record and use them for validation of the form:

1. Right-click the order-placing module and go to New -> Constraint Definition.

2. In the editor with constraints, define the constraints as shown below.

4 order-placing-test.constraints & = B8

Constraints

Constraints a
1%
{ /P)
ID Record (property) Constraint type Add
< Order.ltem.NotEmpty éOrder.item éNotEmpty(message—: "Order item is empty.") Remove
4 Order.price.NotNull ‘Order.price ‘NotNull(message -> "Order price is empty.")

Order.price.Min Order.price Min(lowerBound -> 5, message -= "Price too low.")... Up

Down

Constraint Details

1D: "Order.price.Min

Record (property): Order.price

Tags:

Constraint type: Min(lowerBound -> 5, message -> "Price too low.") Edit...

Figure 2.2 Constraints for the Order Record

../pds/recordchangeproxy.html
../pds/recordchangeproxy.html

2.2 Validating a Record from a Form 13

3. To check if the input meets the constraints, trigger validation of the order when the createButton is clicked: in
the Click Listener expression, call the validate () function.

{ e —>
def List<ConstraintViolation> errors := validate(order, null, null, null);
if errors.isEmpty () then

mergeProxies (false, order);
Forms.submit () ;
else
//Displays the errors on the createButton
//1if the user never enters any value in the item
//and price field:
showDataErrorMessages (errors, createButton)
end

}

4. Now the messages from constraints are all displayed on the createButton; Enable displaying of the messages
on the respective input components by calling c. infervValidator (null) on the input fields.

Now we can upload the module to test the document:

1. Make sure the server is running.
Right-click the Module and go to Upload As -> Model
Gotohttp://localhost:8080/1lsps—application and login.

Click Documents in the menu on the left.

o > w0 D

Test the Order page.

PLACE ORDER

ltem: pen

Price: | 1

Price too low. —
| 1 Iaue srIue Cancel

Figure 2.3 Order page

http://localhost:8080/lsps-application

14

Forms Tutorials

2.2.1 Log Confirmation of Order

We will now extend the Order page to instantiate a process that will log a message when the user places an order.

Note that you could call the 1og () function from the Ul definition when the user performs some action, too.
However, for demonstration purposes, we will run a BPMN Process to do so. This will allow you to define potentially

a complex flow of actions.

First, let's create the process:

1. Create a logging module with a BPMN process.

2. In the graphical editor with the process file, right-click into empty space on the canvas and under New select

the None Start Event.

= order-placing.docs

order-placing.dat order-placing.constraints | *log-order-message.gobpmn &

q)
@ v <

© requestFeedback »

e

Task

Subprocess

Reusable Subprocess

Exclusive Gateway

Parallel Gateway

Copy (s None Start Event

Copy Qualified Name Conditiondl Start Event
Signal Start Event
Timer Start Event

Undo Typing ctrl+z

[Properties & ° P Escalation Start Event
) Line Style v Error Start Event

© BPMN Diagram Layout Conditional Intermediate Event

* Detail Name: Show In Shift+Alt+W » Cakch Signal Intermediate Event
_ Autola Search For Throw Signal Intermediate Event
_ | Catch Escalation Intermediate Event

DescigEEiSnoes 2 tc i Throw Escalation Intermediate Event
Input Methods v Timer Intermediate Event

| simple End Event
Terminake End Event

Figure 2.4 Creating process elements

= 0
= | 5% Palette 3
N
—*
(= Activities o]
O @®
(= Gateways ©
(= Start Events @
0@ 06 L«
m = = E
Status: -

3. Drag the quicklinker icon next to the None Start Event to a spot where you want to insert the next process

element, the Log task.

2.2 Validating a Record from a Form 15

Figure 2.5 Dragging quicklinker

4. In the context menu, select Task and then Log task.

5. On the Parameters tab in the Properties view of the task, define the message that should be logged and its
message level.

6. Connect the task to a Simple End Event.

er e i= order-placing.docs order-placing.constraints /| log-order-message.gobpmn 2 = 8
v G~ el ® & 100% <~ 1+ 1+ A v DefaultFont ~ Pl
© requestFeedback *
*|| %% Palette g
ly 0O
4
= Activities w =l
O ®
= Gateways <«
(= Start Events LS
T Properties M v = g
@ Task: Task1
_ Parameters: message /* String #/ -> "A user placed an order." Edit...
_ level /* Integer =/ -> 100
* Parameters

=

Figure 2.6 Finished process

Now we will add to the createButton in the Order document an expression that will create an instance of the
logging model and trigger the process:

7. Open the order form and add a call to the createModellnstance function into the Click Listener of the create«—
Order button. Note that you can pass a process entity from the call if the process needs to work with a shared
record from the document, in our case the order.

16 Forms Tutorials

{ e —>
def List<ConstraintViolation> errors := validate (order, null, null, null);
if errors.isEmpty () then
//when the form is valid, the shared record instance is created based on the proxy Order o
mergeProxies (false, order);
//creates a model instance of the order-placing module
//which instantiates the log Process:
createModelInstance (true, getModel ("logging", "1.0"), order, null);
Forms.submit () ;
else
showDataErrorMessages (errors, orderButton)
end;

8. Save the definitions and upload the modules.

9. Go to the application and create an order from the document.

Let's check that the logging model with the process was instantiated:

1. Back in PDS, switch to the Management perspective.

2. Refresh the Models view: It now contains an entry of the loggin model instance.

2.3 CRUD Grid

We will create a document with an editable overview of persisted entities: the user will be able to switch the entity
type displayed in the grid, edit and delete any entry.

2.3.1 Creating Database Data

First, prepare the persisted data that will be displayed in the document:

1. Create a data type hierarchy of shared Records Book, Author, and Publisher. Create relationships between
Book and Author, and Book and Publisher as depicted below.

2.3 CRUD Grid 17

Author]
&

71 +id:Integer
+firstName : 5tring
{authors} +surname : String

—

Book [] ﬁf#
#| {books}

71 +id: Integer
+title : String

+year : Integer E;EDGHES]
““"‘n_
e,
=0 publisher [
publisher o

ki

71 +id: Integer
+name : String R-

2. Initialize database data, for example:

(a) Create a process definition.

(b) Inthe process, create a workflow that will be executed: for example, a None Start Event with an outgoing
Flow to a Simple End Event.

(c) On the Assignment tab of the Flow, define an expression that will initialize the database data, for

example:
def Author heller := new Author (firstName -> "Joseph", surname —-> "Heller");
def Author vonnegut := new Author (firstName -> "Kurt", surname -> "Vonnegut");
def Author kerouac := new Author (firstName -> "Jack", surname -> "Kerouac");
def Publisher sas := new Publisher (name -> "Simon & Schuster");
def Publisher p := new Publisher (name -> "Putnam");
def Publisher dp := new Publisher (name -> "Delacorte Press");
def Publisher vp := new Publisher (name —-> "Viking Press");
new Book (year -> 1961, title -> "Catch 22", authors -> {heller}, publisher -> sas);
new Book (year -> 1988, title -> "Picture This", authors -> {heller}, publisher -> p);

new Book (year -> 1969, title -> "Slaughterhouse-Five", authors -> {vonnegut}, publisher -

(
(
new Book (year —-> 1973, title —-> "Breakfast of Champions", authors —-> {vonnegut}, publishe
(
new Book (year -> 1957, title -> "On the Road", authors -> {kerouac}, publisher -> vp);

3. Run the module.
The quickest way to test your models is to do the development testing on the PDS Embedded Server: click

= to start it and connect PDS to the server, and then right-click the module and go to Run As > Model to
upload the module and create its model instance.

18 Forms Tutorials

2.3.2 Creating the Form

We will create a Grid over the shared Records that will display values of the Record fields:

'y

. Create a form definition.
2. Inthe form, insert the Vertical Layout and Grid component.
3. Define the Grid component properties:

» Defineits name as EntityGrid
» Set its data source to Type and the value to Author

 Select the Editor enabled flag in the Editing property.

4. For each Author property, insert a Grid Columns into the Grid and set the Value Provider to Property path
and insert the property path: you will insert columns for the Author.id, Author.firstName, and
Author.surname property paths. Also select the Editable flag on each column.

5. If you have not done so yet, run PDS Embedded Server by clicking B | right-click the form and go to Run
As > Form Preview: this will open a preview of the form in your browser.

ENTITYOVERVIEW

Note if you click a row, you can edit the entries: edits are reflected on the database when you save the edits
or press Enter.

Now we are facing the following problem: the Grid is static and it will always display only Authors and the user
cannot change this. You need to allow the user to change the type of entity that is displayed in the grid and
when they select an entity, you need to update the content of the Grid. And not only the content: you need to
actually update which Columns are displayed. To achieve this, we will use the dynamic features of the forms.

6. First, let us externalize the setting of the displayed entity type:

(a) Create a form variable currentEntity of type Type<Record> that will hold the entity the user
selects.

(b) On the Grid, set value of the data source to currentEntity.

(c) Run preview of the form: right-click the form and go to Run As > Form Preview. The preview will fail
with a runtime exception since the currentEntity variable is null.
The first solution that comes to mind is to initialize the variable from a component higher in the hierarchy,
in our case, the vertical layout component, during form initialization: However, this will result in the same
exception because these expressions are executed after the form tree is initialized. You can check this
in the form expression (right-click into the form and select Display Widget Expression). Hence we
need to initialize the variable sooner: you can do so in a form constructor:

(d) Open the methods file of the form: the file is created automatically along with the form file and bears the
same name.

(e) Define a new constructor with the variable initialization:
public EntityOverview () {

currentEntity := type (Author);
}

2.3 CRUD Grid 19

7. Now you need to adapt the columns and their value providers according to the currentEntity value. You need
to do this dynamically as opposed to modeling individual column since each entity has different columns:

(a) Delete the Grid Columns in the Grid.
(b) On the Init tab of the Grid, define how to add the columns:

//get a list of properties of the entity in the currentEntity variable:
def List<Property> properties := currentEntity.getProperties();

foreach Property p in properties do
def forms::GridColumn col := c.addColumn (new PropertyPathValueProvider (p));

end

(c) Run preview of the form: right-click the form and go to Run As > Form Preview.

ENTITYOVERVIEW

The next problem you are facing is that the Grid adds columns for properties on related Records. Let us
filter properties of these complex types: adjust the Init expression on the Grid as follows:

def List<Property> properties := currentEntity.getProperties();
foreach Property p in properties do
//exclude properties with Records or Collections:
if 1
p.getPropertyType () .isSubtypeOf (type (Record)) ||
p.getPropertyType () .isSubtypeOf (type (Collection<Object>))
)
then
def forms::GridColumn col := c.addColumn (new PropertyPathValueProvider (p), null,
//Boolean sortable:
null,
// Boolean editable:
true,
// Editor editor:
null);
end
end

8. Provide the user a component that will change the value of the currentEntity:

(a) Add a local variable options of type Map<Object, String> and initialize it from the
constructor:

EntityOverview {
public entityOverview () {
currentEntity := type (Author);
//added initialization of options:
options := [Author -> "Author", Book -> "Book", Publisher -> "Publisher"];

}
(b) Add a Single Select List component above the Grid.
(c) Inits properties, set:

* Binding to Reference and its value to ¤tEntity
» Options to Map and its value to options

20 Forms Tutorials

(d) On the Init tab, define the action when the user selects an entity:

c.setOnChangelistener ({ e —>
//remove all columns:
foreach forms::GridColumn ¢ in EntityGrid.getColumns () do
c.remove ()
end;
//update the type data source of the grid:
EntityGrid.setDataSource (new forms::TypeDataSource (currentEntity));

//get list of properties of the entity record:
def List<Property> properties := currentEntity.getProperties();

//create colums for properties in the grid:
foreach Property p in properties do
if 1 ¢
p.getPropertyType () .isSubtypeOf (type (Record)) ||
p.getPropertyType () .isSubtypeOf (type (Collection<Object>))
)
then
def forms::GridColumn col := EntityGrid.addColumn (new PropertyPathValueProvider
end
end;
Fo)s
c.setNullSelectionAllowed (false);

Since the adding of columns on click and on init are identical starting from the properties declaration,
consider defining a function. Here we define extension method of the Grid component:

@ExtensionMethod

public Grid getGridWithColumns (Grid g, Type<Record> currentEntity) {

def List<Property> properties := currentEntity.getProperties();

properties.compact () .collect (
{p—>
if !(p.getPropertyType () .isSubtypeOf (type (Record)) ||
p.getPropertyType () .isSubtypeOf (type (Collection<Object>)))
then
g.addColumn (new PropertyPathValueProvider (p), null,
//Boolean sortable:

true,

// Boolean editable:
true,

// Editor editor:
null)

end
}
)
g;
}

Adapt the assembly of columns on gridto EntityGrid.getGridWithColumns (currentEntity).

9. Add the column with the Delete button: if you defined the getGridWithColumns extension method then
you need to add EntityGrid.addButtonColumn ("Delete", { e:Record -> delete«
Records ({e}); EntityGrid.refresh()});. If you have not, you will need to add it to the code
that creates the columns in the Single-Select component and to the Init code of the Grid.

10. There is one more issue to take care of in and that is the headers of columns. Normally, to display a name of
a Record or it field, you would set the caption, which is a String, for each component with the values of the
record or field. As this can be pretty annoying, you can define labels: They are defined on records and fields
and used exactly in such cases:

11. Set the labels on Field of the Author, Book, and Publisher Records.

2.3 CRUD Grid 21

12. Set the column header to the label value: if you defined the getGridWithColumns() extension method then
you need to add a setHeader (core: :getLabel (p)) call to the generated columns. If you have not,
you will need to add it to the code that creates the columns in the Single-Select component and to the Init
code of the Grid.

public Grid getGridWithColumns (Grid g, Type<Record> currentEntity) {

def List<Property> properties := currentEntity.getProperties();
properties.compact () .collect (
{ p —> 1if ! (p.getPropertyType () .isSubtypeOf (type (Record)) |
p.getPropertyType () .isSubtypeOf (type (Collection<Object>)))
then
g.addColumn (new PropertyPathValueProvider (p), null,
//Boolean sortable:
true,
// Boolean editable:
true,
// Editor editor:
null)
//adding header to each column:
.setHeader (core: :getLabel (p));
end
}
)i
g.addButtonColumn ("Delete", { e:Record —-> deleteRecords({e}); g.refresh()});
g9
}

13. Run preview of the form.

2.3.3 Adjusting Presentation

In the preview, you can spot that the Single-Select List and the Grid have empty space below: their size does not
get adapted to their content.

To fix this, set the number of rows to the number of displayed items:

 on the Single Select List, set the number of rows to the number of displayed options:
c.setRows (options.size());

+ on the Grid, set the number of rows to the number of data-source entries: You will need to get the number of
entries for the selected Record and set this as the height of the Grid on initialization and whenever the user
changes the displayed entity:

g.addButtonColumn ("Delete", { e:Record —-> deleteRecords({e}); g.refresh()});
g.setHeightByRows (countAll (currentEntity));
g

If you need to adjust the presentation further, such as, adding margin, consider using CSS or JavaScript.

22 Forms Tutorials

2.3.4 Creating the Document

The final step is to create a page with the form: a page is represented by a document definition. When you upload a
document definition, it is included in the list of documents, which are accessible from the Application User Interface.
For more information on documents, refer to Documents-related documentation.

To define a new document, do the following:

1. Create a document definition file:

(a) Right-click your module.
(b) In the context menu, go to New > Document Definition

(c) Inthe New Document Definition dialog, define the definition file properties: check its location and modify
its name.

2. Open the document definition file.
3. Inthe Documents area of the Document Editor, click Add.
4. In the right part, define the properties of the document:

» Name: "entityOverviewDoc"
« Title: "Entity Overview"

» Ul definition: new EntityOverview ()

5. Upload your Module and check the Document on the Documents tab of the Application User Interface.

2.4 Validation of Multiple Components

Required result:

A forms::form component becomes invalid as part of front-end validation when some components hold a certain
combination of values: in the example, a Text Field will be valid only if another Text Field contains a correct value
and if the combination of the values of the fields is valid.

1. Create a form with two Text Fields.

../pds/Documents.html

2.4 Validation of Multiple Components 23

o| "Field A"

"FHeld B

“Validate™

2. Set field IDs, for example, to a and b.

3. Define a method on the form that add custom error messages to components when they contain invalid
values:

//rules for validation of the fields:
private void validateGroup () {

//error message for field a:

def String errorl := (a.getValue() == "1" and b.getValue()== "1") ? "Values must not eg
//error message for field b:

def String error2 := (b.getValue()== "3") ? "b value must not equal 3." : null;

def String all := joinErrors (errorl, error2);

//setting the errors as custom error messages on a:

if !'all.isBlank () then
a.setCustomErrorMessage (all);

end

//concatenate errors from components:

private String joinErrors (String... errors) {
def String concatenated := join(errors, "
");
concatenated.isEmpty () ? null : concatenated;

}

4. Call the method whenever a value is changed on either of the fields or whenever applicable. click.

//Init on text fields:
c.setOnChangeListener ({ e —>
validateGroup ()
)

24 Forms Tutorials

2.5 Editing Grid Data in a Popup

Important: This tutorial uses the experimental forms module. To use fully supported charts, use the
ui module for your forms.

Required result: The user accesses a Grid with entries of a shared Record type via a document. When they click
the Edit column in a row, a Popup with editable data of the row is displayed. They can either save the changes or
drop the changes. The Popup is reusable.

Note that this tutorial does not implement optimistic locking so if a record is changed from a different transaction
while being edited, the changes are overridden.

We will use the Applicant shared record displayed below.

Applicant -]

T

11 +id:Integer
+name : String Level =
+surname : String

+healthCheck : Boolean BEGINNER

+dob : Date PROFESSIOMAL

Figure 2.7 Applicant record with the Level enumeration used in the Applicant Record field

2.5.1 Creating the Public Popup

First we will create a form for the popup. The form will be used and displayed on two occasions: when the user will
be creating a new applicant and when they will be editing an existing applicant.

To create the public popup ApplicantDetailsPopup, do the following:

1. Create a form definition ApplicantDetailsPopup.

2. Inthe Outline view, select the form root component and, in its Properties view, setits type to forms : : Popup
and make sure it is public.

../ui-vaadin/index.html

2.5 Editing Grid Data in a Popup 25

5. GO-BPMN Explorer £ = O [z ApplicantDetailsPopup.form & = B

2L | 100% ~|t i1 1> A v nefanitFant v v - o~ F 4

&)

A @
B “(H-EB-O-rm-rd Q@

* ™ applicantaaca 1.u

» ® GridModule 1.0 E ApplicantDetailsPopup <* Palette 3
» 8 GridwithPrivatePopup 1.0 Iy select
~ % GridwithPublicPopup 1.0 = Container Components ‘
~& Module Imports [l vertical Layout
& core ey,
& forms £ Input Components «
& human I Text Field
B ApplicantDetailsPopup.form e -
[{] ApplicantDetailsPopup.metho (= Output Components .
O Groupvalidation Ay Label
O Label Bid i -

~ (= Action Components 0
O LayoutAndHints B

U RadioButton = Button
O slider e 7
I Tahle Form| Methods
5= Outline 52 = B | [Properties &2 ! Problems ©]Error Log - Search B Console % v =8
B & & Form : ApplicantDetailsPopup
Tree| Overview * Detail Name: \ApplicantDetailsPopup Public: status: [| w
ppplicantbatailsropup _ Supertype: I forms::Popup I Define...
® Interfaces:
Description:
Connection: LSPS Embedded Server(admin); | P LSPS News

3. Create the applicant form variable, which will hold the data of the new or edited applicant: right-click the root
node in the Outline view and

4. Define form constructors in the methods file of the form:

* a non-parametric constructor we will use when creating a new applicant:

It initializes the applicant variable to a proxy of the xApplicantxx type.

» a parametric constructor we will use when editing an existing applicant:

It takes the Applicant parameter and stores its proxy the form variable.

ApplicantDetailsPopup {

//constructor called for a new applicant:

public ApplicantDetailsPopup () {
//change proxy of the Applicant type is assigned
//so that applicant is created only after the user clicks Save:
applicant := proxy (Applicant)

}

//constructor called for an existing applicant:

public ApplicantDetailsPopup (Applicant applicant) {
//change proxy of the applicant object is assigned
//so that changes on the applicant are stored only after the user clicks Save:
this.applicant := proxy(applicant)

5. Design the form: keep in mind it represents the content of a popup; bind the input fields to the application
variable as appropriate.

26 Forms Tutorials

| |-5| “First name: "

"surname:; ™

"Date of birth: ™

go0 "Sayea" "Cancel”

6. Define the click listener expression on the Save button:

{ click:ClickEvent ->
//apply the changes
mergeProxies (false, applicant);
//close the popup:
this.setVisible (false)
}

7. Define the click listener expression on the Close button:

{ click:ClickEvent ->
this.setVisible (false)

2.5.2 Using the Public Popup

Create the ApplicantList form with the list of applicants with the following components:

1. Insert a Vertical Layout.
2. Insert a Grid:

(a) Inits properties:
i. SetIDto applicantListGrid.
ii. Set the data source to Type and its value to the record type Applicant.
(b) Insert a Grid Column for each applicant property:
» Set the Value Providerto Property Paths.
« Set the values of value providers to the Applicant fields, such as Applicant .name.
» Set the appropriate Renderer, for example, for the Applicant.level, set the Enumeration renderer.
(c) Insert a Grid Column that will render the Edit button that will open the public Popup with the row data:
i. Set Value Providerto Constant with the value "Edit".
ii. Set Rendererto Button.

iii. Below define the button action so that it creates and displays the popup with the data of the edited
applicant:

2.6 Filter over Grid and Table with a Custom Data Source 27

{ clickedApplicant:Applicant ->
//create the popup with details:
def ApplicantDetailsPopup appDetailsPopup := new ApplicantDetailsPopup (clickedApp.
//display the popup:
appDetailsPopup.setVisible (true);
//set listener on the popup, so the grid with applicants is updated when the popuj
appDetailsPopup.setPopupCloselistener ({ e->applicantListGrid.refresh()});

}

3. Below the Grid insert a Create Applicant Button that will create a new applicant using the non-parameteric
constructor of the public popup:

{ click:ClickEvent —>
//creates the public popup with the non-parametric constructor:
def ApplicantDetailsPopup appDetailsPopup := new ApplicantDetailsPopup();
appDetailsPopup.setVisible (true);
//refreshes the grid so it contains the new applicant:
appDetailsPopup.setPopupCloselistener ({ e->applicantListGrid.refresh() });

i g "Name” g "Surname” B "Actions”
Applicantname Applicantsurname “Edit"

"Mew Applicant”

Figure 2.8 Resulting form

Now you can use the ApplicantList form in documents or user tasks as their UlDefinition.

You can download the tutorial example here.

2.6 Filter over Grid and Table with a Custom Data Source

Note: This tutorial uses the forms module as its form implementation.

Required outcome: A grid and a table that pull data from a custom data source and support filtering.

Note: You can download the tutorial model here: go to File > Import; select General > Archive File;
locate the zip file; select the modules to import (datalnit and filterGrid).

../media/tutorials/models/gridWithPopups.zip
../media/tutorials/models/filterGrid.zip

28 Forms Tutorials

2.6.1 Creating a Custom Data Source

To create and customize a data source for a tabular forms component, do the following:

1. First create a shared record Applicant and a query that returns its instances:

(a) Create shared Record Applicant with fields firstName and lastName
(b) Create a standard query that will return the record and deal with potential filtering:

i. Create a standard query that returns all Applicants.
ii. Define possible filters as its input parameters; in our case, we can filter either by firstName or
lastName so we will allow two parameters.
iii. In the condition of the query define the behavior of the query so applies filters when passed:
if isBlank (firstNameFilter) and isBlank (lastNameFilter) then

true
elsif !isBlank(firstNameFilter) and !isBlank (lastNameFilter) then
a.firstName like ("+" + firstNameFilter + "*") and a.lastName like ("+" + lastNam:
elsif !isBlank (firstNameFilter) and isBlank (lastNameFilter) then
a.firstName like ("*" + firstNameFilter + "*")
else
a.lastName like ("+" + lastNameFilter + "x")
end

2. Create the data source for your Grid or Table:

a) Create a record that represents your data source type.

C

(a)

(b) Importthe forms: :DataSource interface.

(c) Make the record implement the forms: : DataSource interface.
)

(d) Add fields to the record that represent the filters.

forms::Data Eﬂurceﬂ Applicant E

<%
[el
|| | -

f 71 +id : Integer

I 1
[R— i

I

I

I

I

I

I

|

+firstMame : String
+lastName : String

ApplicantDataSource

e
k-t

+nameFilter : Filter
+surnameFilter : Filter

Figure 2.9 Custom data source record with the source record

3. Implement the interface methods: adapt the getCount () and getData () methods to handle the filtering.
The filters are passed as input parameters to the methods. Here is an example of the methods:

2.6 Filter over Grid and Table with a Custom Data Source 29

ApplicantDataSource {

public Integer getCount (Collection<forms::Filter> filters) {
def String firstNameFilterSubstring := getFilterValue ("firstName", filters);
def String lastNameFilterSubstring := getFilterValue ("lastName", filters);

//count query that filters the results:
getApplicants_count (firstNameFilterSubstring, lastNameFilterSubstring);

}

public List<Object> getData (Integer startIndexx, Integer countx, Collection<forms::Filter>

def String firstNameFilterSubstring := getFilterValue ("firstName", filters);
def String lastNameFilterSubstring := getFilterValue ("lastName", filters);

//query that gets results and applies filters:

getApplicants (firstNameFilterSubstring, lastNameFilterSubstring);

private String getFilterValue (String filterParameterName, Collection<forms::Filter> filt
//get first filter with matching name:

def forms::Filter firstMatchingFilter := getFirst(filters, { f -> f.id == filterParame
// get search substring in filters:

def String filterSubstring := firstMatchingFilter == null ? null : (firstMatchingFilte
filterSubstring

public Boolean supportsFilter (forms::Filter filterx) {
if
filter.id == "firstName" || filter.id == "lastName" then true;
else
false
end

public Boolean supportsSort (Sort sortx) {
false

}
public String toString() {
#"ApplicantDataSource"

2.6.2 Creating the Form

1. On the Grid, set the data source to Custom with the value of the data source instance.
new ApplicantDataSource ()

2. Select the column that should filter its value to open its properties:

(a) On the Detail tab, define the value Provider as Property path and the value of the property,
Applicant.firstName or Applicant.lastName.

(b) On the Filtering tab, select the Filterable option and define Filter configuration: new Filter«
Config(filterId -> "firstName") ornew FilterConfig(filterId -> "last<«
Name").

30

Forms Tutorials

Chapter 3

Ul Forms Tutorials

« Editable Table
 Table with Derived Values
» Calendar with Adding Entries Functionality

* Pop-up with Save and Cancel Buttons

3.1 Editable Table

Required result:

« ui::Table with columns with editable values.

» One of the columns contains a drop-down list with the possible options. The options are based on an enu-
meration.

+ The table values are persisted when you click the Submit button.

EDITABLETABLE

John Doe ‘ IINTERMEDIATE |
Submit BEGINNER
b

ADVANCED
PROFESSIONAL

Figure 3.1 Resulting form

To create a document or a to-do with such a table, you need to do the following:

1. Create the data type model with a shared record for the persisted entity and the enumeration.

32 Ul Forms Tutorials

Applicant] Level =

- : "E beginner

71 id:Integer | _

) . intermediate
firstName : 5tring . 4
surname : String a "’ﬂﬂﬂﬁ
dob : Date professional
level : Level

Figure 3.2 The underlying data type hierarchy

2. Create the form definition.

(a) Create a form variable of the shared record type (Applicant): The table will use the variable as its iterator.
(b) In the form, add the Table component and define its properties on the Detail tab:

i. Set Data lterator as the reference to the form variable.
ii. Set Data Kind.
iii. Define the Data expression.

In this pattern, we assume you are using the Data Kind set to Data with the Data expression defined as
a closure with two input parameters:{x, y —-> getAllApplicants ()}

(c) In the table component, insert the Table Column components.

(d) In the columns, add the Input components.

il [T] “Applicants”

f— . — . A
EH | § "Name B "Surname g "Level

| -

Figure 3.3 Asset table with columns with two text boxes and one combo box

In the example, we inserted two Text Boxes and one Combo Box:

i. On Text Boxes, define the binding to the reference to the iterator fields, for example, &1 . surname.
i. On the Combo Box component, define the binding to the iterator field and the options to be dis-
played in the drop-down area.

To bind options to the enumeration, convert the enumeration literals to options. You can do so using the
collect () and literalToName () functions.

3.2 Table with Derived Values 33

collect (literals (type (Level)),
{e => new ui::Option(value -> e,
label —-> literalToName (e)) })

(e) Define the Submit button:

i. Insert the Button component into the form.
ii. Create ActionListener on it.
iii. On the listener properties, select the Submit action on the Actions tab.
(f) Optionally, set the text that should be displayed in the table if it contains no entries: on the Presentation

Hint tab of the table properties, add the no—-data-message hint.

3. Create a document or a process with a to-do that uses the form.

3.2 Table with Derived Values

Required result: A table with a column with a value derived from another column value: One column value is
persisted; the derived value is transient. The column values depend on each other and adapt to each other when
either is changed.

TIMEDEPOSITTABLE()

4.50| 2017-11-22 12:30

Figure 3.4 When you change Interest Rate, the Withdrawal Date changes. Withdrawal Date is not persisted.

1. Create the underlying data type hierarchy with the base shared record and a non-shared record with fields
for the derived values:
(a) Create or import the base shared record.
(b) Create a record with the derived field.

(c) Define an association between the records: the derived record is the target of the relationship.

34 Ul Forms Tutorials

Withdrawal B Derived record: the derived
Bl - - - value (withdrawalDate)
withdrawalDate * Date influences the interestRate

Record association from the
———————————————— derived record to the base
record

/timedeposit

TimeDeposit =

owner : Client
amount: Decimal
interestRate : Decimal
dueDate ; Date

id : Integer

Figure 3.5 Base shared record TimeDeposit associated with the derived non-shared record Withdrawal

Important: In such scenarios, you cannot use the supertyping mechanism since a shared
record is involved:

« If you used a derived non-shared record that is the supertype of the base shared record,
the derived record would include the fields of the base shared record but the shared record
itself could not be recovered efficiently.

« If you used a derived non-shared record that is the supertype of the base shared record, If
you decided to define the base shared record as the supertype of the wrapper non-shared
record, whenever you decide to refresh the table with the record data, new shared record
instances would be created and written in the database.

2. Create the form definition.

(a) Create a local variable of the derived record type.

The variable will serve as the iterator variable for the table.

(b) Create a local variable of the collection type with the derived records (for example, List<Withdrawal>),
and initialize it so it holds the available Withdrawal object, for example, with the collect () function.

3.3 Calendar with Adding Entries Functionality 35

E= Outline = = B [Properties & ' Problems Error Log Console r ¥ = 0

B

B |& % | © Variable: depositCollection
Tree| Overview

* Detail Name: depositCollection Status: "
¥ E timeDepositTable _
o currentwithdrawal : withdrawal Type: List<withdrawal> Define...
o depositCollection : List<wWithdray o
Monitoring:

Initial value: collecti . Edit.
getAllTimeDeposits(),
i

x -> new Withdrawal

withdrawalDate -> now(),
timedeposit -> x

Figure 3.6 The collection form variable with the initial value

(c) Inthe form, insert the Table component and define its properties:
» Data Kind as Data
» Data as a closure that returns the local variable with data.
» Data lterator as reference to the iterator variable

5= outline 523 = 13 % = A [OProperties & Problems €] Error Log Console ™ v =g
Tree| Overview FH Table ID=WITHDRAWAL_TABLE
¥ B timeDepositTable
o currentwithdrawal : Withdrawal * Detail 1D: WITHDRAWAL_ Modeling Id: WITHDRAWAL_TABLE__aRkWkM9zEeeoPe1N5
o depositCollection : List<Withdraw _ . . n .
v [§ Vertical Layout _ Data Kind: Type Query Collection @ Data Generic
EE Table ID=WITHDRAWAL _TABLE _BData: { i,n -> depositCollection} Edit...
_ ({integer, Integer : Collection<Object>})
[PresEntaTom s
_ﬁData(ount: Edit...
(Integer)
i
® Data iterator: ¤twithdrawal Edit..
(Reference<Object>)
® Index iterator: Edit...
(Reference<Integer=)
b ® Type: Fdir =
(d) In the table component, insert Table Column components and input components as their child
components: define their ID and the binding of the input components to the respective field of the
iteration variable (in the example, scurrentWithdrawal.timedeposit.interestRate and
¤tWithdrawal.withdrawalDate).
(e) On each input component define the following:
i. Create ValueChangelListeners: as the component to refresh, define the other input component and
as Handle expression, define the new value of the iterator field, for example, using a function. Do
not define the column as the component to be refreshed. Columns do not support the refresh
action.
currentWithdrawal.withdrawalDate:= countWithdrawalDate (currentWithdrawal.timedeposit

ii. Set the Immediate property to t rue otherwise change of a value will not trigger change of the
other value: the change would take place only after another event triggers the processing.

When set to t rue, the value changes are processed whenever the user clicks out of the input component or
presses Enter.

3. Create a document or a process with a to-do that uses the form.

3.3 Calendar with Adding Entries Functionality

Required result: Form with a calendar into which you can add entries by selecting days in the calendar: entries
details are defined in a pop-up dialog.

Do the following:

36

Ul Forms Tutorials

1. Create or import the shared record for your calendar entries.

ui::Calendarlktem
i

L~

caption : String
description : String
from : Date

to : Date

allDay : Boolean
style : String

CalendarEntry [

allDay : Boolean £
caption : String
description : String
from : Date

style : String

to : Date

71 id:Integer
notes : String

Figure 3.7 Shared record for calendar entries derived from the Calendarltem record

2. Create a form definition, open it and insert a Vertical Layout component.

3. Create a local variable of the calendar entry type.

The variable will hold the data about a new calendar entry. For the example above, the variable will be of the
CalendarEntry type.

4. Create the calendar:

(a) Insert the Calendar component into the vertical layout.

3.3 Calendar with Adding Entries Functionality 37

2-1-

Figure 3.8 Vertical layout with calendar component

(b) Define the properties of the calendar:

» Data: closure that returns all calendar entries (The closure is called on calendar initialization and
refresh: After you add a new calendar entry to the database, the calendar needs to be refreshed
so as to load and render the new calendar entry.)

{ a, b —> (toSet (findAll (type (CustomCalendarItem)))) }

+ To item: transformation of the data object to Calendarltem so the Calendar component knows how
to display them; in this case, transformation of the CalendarEntry to ui::Calendarltem.

{ calItem:CalendarEntry -> new CalendarItem(caption —-> calltem.caption, description -
5. Create the popup:

(a) Inthe form, insert the pop-up component and define its properties:

+ ID: although component ID is not required, you will need it when displaying the pop-up (on button
click, the visibility variable will be set to true the pop-up component will be refreshed so as to have
it rendered).

+ Visible: enter a name of a Boolean variable that holds the visibility of the popup.
You can define a Boolean form variable; make sure to set its initial value to false.

(b) Nest the pop-up component in a View Model: right-click the popup and selects Insert Parent > View
Model. Define its ID.

Note: The view model component isolates the data in the pop-up component from the data in
the form context: it creates an evaluation context over the screen context. You will initialize the
calendar entry variable when the pop-up is displayed and get the dates the user selects in the
pop-up, all this will take place in the new evaluation context.

If you don't nest the pop-up in a view model component, the initialization of the variable will
create a shared record with incomplete data in the screen context. When nested in the view
model, the data is written into the screen context only after it is submitted or persisted by a
listener.

6. Create the content of the popup: insert the Form Layout component and into it input components so the user
to provide the other details for the CalendarEntry. Make sure the input components are bound to the correct
field of the CalendarEntry variable.

38 Ul Forms Tutorials

e A Entrie 42 myCalendar.form &2 = g8
el @ 2 100% | v
myCalendar 4
i
=]
"Start date: "
"End date: ™
[I"All-day event"
T Properties =2 £ M ¥ = g0
B Text Box
* Detail ID: Modeling Id: |_USy IM-AEeeoPe1N5XA_kw

| abel: “Caption: " Edit...
(String)

5] .
Required: Edit...
(Boolean)

o Binding: &calEntry.caption Edit
(Reference<Object=)

5]
Read-only: Edit...
(Ronleanl =

Figure 3.9 Calendar form

7. On the calendar component, create a CalendarCreateListener that will display the popup with the selected
dates, when the user selects a time period by clicking and dragging:

 Set its visibility to true and refresh it:

— On the Basic tab, enter the pop-up ID as the Refresh components value.

— On the Basic tab, define the handle expression so it sets the variable with the pop-up visibility
to true.

« Initialize calendar entry with the clicked dates: on the Basic tab, in the Handle expression, extract the
dates from the event into the CalendarEntry variable:

calEntry:=new CalendarEntry (
from -> _event.from,
to -> _event.to
)

8. Define the submit button in the pop-up that will persist the provided data and close the pop-up:

* In the pop-up component of the form, insert the button component and define its properties.

» Create the ActionListener on the button with the following:

Handle expression hides the pop-up.

Refresh the pop-up and the calendar.

Merge the view model (On the Advanced tab, enter the ID of the view model in the Merge view
model components property)

Persist to save the new event in the database so it is picked up by the £indA11 () call on calendar
refresh.

3.4 Pop-up with Save and Cancel Buttons

39

Basic| Advanced| Actions | Expression
Listener type: ActionListener

Refresh components: FORM
Listener is disabled

Validators:

Validation Expression Error Placement

Execute even if validations failed
Handle expression:

popup_visibility:=false;
calEntry:=null

Figure 3.10 Listener on the submit button

Add Listener

3.4 Pop-up with Save and Cancel Buttons

Add...

Edit...

Remove

Edit...

Required result: When you click a button in your form, a popup where you can edit the form data is displayed. The
pop-up contains an Save and a Cancel button. When you click the Save button, the pop-up closes and the data in
the form contains the new data. When you click Cancel, the data in the pop-up is discarded and the pop-up closes.

POPUP()
User Details
First name C

Surname Cioe

Email: |ochn@doe.com

Edit

First name Jang|

surname Doe
Ermnail John@doe.com
Save Cancel

40 Ul Forms Tutorials

To create a pop-up window with a Save and Cancel button, do the following:

1. Open the form with the data you want to edit in the popup.

In the example, the data already exists and is stored in a form variable. If you want to create new data from
the popup, make sure to initialize the data in the View Model we create in the next step.

. ‘User Detalls”
5| Ay userfirstName

Ay Usersurname

Ay useremall

Figure 3.11 Form with user details

2. Insert the View Model component into the form and define its ID.

The view model creates a new context for its child components. It holds the differences to the form context.
This will allow us to discard or save the differences in a single step: we will either merge the view-model
context or discard it (for more details on how it works, refer to view model).

3. Insert the Popup component into the View Model component.

If you plan to create a complex component tree in the popup, consider using the dynamic popup to
prevent performance issues: the dynamic popup is created only when the popup is requested, while the
modeled popup is created when the form is initialized, which can be time consuming.

4. Define the popup behavior:

(a) Create a Boolean form variable with the initial value to false and set the variable as value in the
Visible property of the popup.

(b) Create the logic that will open the popup, for example, insert a Button with an ActionListener that sets
the visibility variable to true and refreshes the popup.

../ui-vaadin/uispecialcomponents.html#viewmodel
../ui-vaadin/containercomponents.html#dynamicpopup

3.4 Pop-up with Save and Cancel Buttons

a1

= popup.form & = 8
popup ¥ Palette 3
[select
i O ‘L_J_TE; Dsz‘rsﬁrsmame = Container Components
F| Ay user.
= Input Components
Ay usersurname -
(= Outpuk Components
Ay useremail - =
(= Action Components @
S Button
& Action Link

=
(= Edit Listener

*Basic Advanced | Actions|Expression
Listener type: ActionListener -

Refresh components: POPUP

Listener is disabled

Validators:
Validation Expression Error Placement
A
-
.
|
Eeropely Data validation: H}
= Button
* Detail | |
__ Execute if other validations failed Execute even if invalid components I
_ Handle expression: =
_ popupVisibilityVar := true
Feswee B
Eventidentifier: _event
Description:

B

| 1

Validate Cancel OK

cOnnectilj'—|lle»~fs

Figure 3.12 Setting Popup visibility for the xSavex button click

5. Create the popup content:

(a) Insert a layout component and input components into the Popup component.

(b) Bind input components to the local variable and define the labels.

(c) Insert the Button component for the Save button and attach to it an ActionListener that will execute the

following:

* Merge the changed data to the form context: On the Advanced tab in the Merge view model

components property, insert the ID of your view model.

+ Close the popup: on the Basic tab in the Handle expression, set the popup visibility to false and

in the Refresh components, insert the ID of the popup component.

* Refresh the data in the form (outside of the view model): in the Refresh components, insert the IDs

of the components.

42 Ul Forms Tutorials

= *popup.form &2 popupWithApplyAndCancel.datatypes = (=

M Edik Listener

| *Basic | *Advanced | Actions | Expression
popup

| Listener type: ActionListener -

B "User Details"
B I::Tir“ E;‘;m Name Refresh components: POPUP, USER_DETAIL_PANEL

Ay Usersurname Listener is disabled

Ay useremail Validators:

“Edit”

Validation Expression Error Placement

B
=il [5| "Firstname: "

"Surname:”

Data validation:

"Email:"

Execute if other validations failed Execute even ifinvalid components

Handle expression:
popupVisibilityvar := false

Eventidentifier: _event
Description:

Validate Cancel [OK J

(d) Insert the Button component for the Cancel button and attach to it an ActionListener that will execute
the following:

+ Close the popup: on the Basic tab in the Handle expression, set the popup visibility to false and
in the Refresh components, insert the ID of the popup component.

+ Discard the changes in the View Model: On the Advanced tab in the Clear view model components
property, enter the name of your view model.

« Set the listener to execute in the form context: On the Advanced tab, set the Execution context
property to Top level.

If left set to default, the listener would execute in the execution context created by the view model. Since we
are discarding the data from the view model, the visibility setting would be discarded as well and the popup
would remain open.

&

3.4 Pop-up with Save and Cancel Buttons 43

= popup.form 2 popupWithApplyAndCancelis Edit Listener

¢ ®_ © |1008 *Basic |*Advanced| Actions| Expression|

popup Process components: @ lall) this) components:
[l | "User Details — Execution context:) default @ top level () component:
8| Ay userfirstName Execute only if visible components:
Ay usersurname Clear view model components: VM
Ay useremail Merge view model components:
m‘ View modelinit:

&
8| = [5| "Firstname: "
"Surname: "

“Email: "

-

Precondition:

Validate || Cancel | [oK J

—

Figure 3.13 Setting cancel as View Model action for the Cancel button click

6. Run the Form Preview and check the functionality.

44

Ul Forms Tutorials

Chapter 4

Process Tutorials

» The pattern of agile processes allows you to design processes in which you can skip an Activity or a flow, and
switch between Activities or flows as required without breaking your data.

+ To create a model instance over a record with your business data can be useful in the cases when you allow
your users to create entities for documents: The user creates an shared record from a document, for example,
an order, and on submit a new model instance takes care of further actions over the entity, such as processing
the order.

4.1 Agile Processes

Required result: A process will recover its progress based on data after restart and it is possible to switch from
one activity to another activity arbitrarily.

Note: You can download an example implementation here. To import the model, do the following:

—_

. Create a GO-BPMN project.

2. Right-click the project and select Import > Archive file.

3. Enter the path to the zip file into the From archive file field.
4. Click Finish.

Patterns of agile mechanisms solve the following:

» Set the correct execution state after restart: on restart, the process omits activities that were already
performed.

For example, if you interrupted an order-dispatch process at a moment when the order is ready to be dis-
patched, on restart, the process omits the invoicing and payment activities and proceeds to the dispatch
activity.

This also allows you to update the underlying model easily: you stop your model instances, upload a new
version of the model, and resume the stopped model instance according to the new model. The new model
instance get into the same or equivalent execution status as the original model instance on resume.

« Skip arbitrarily through activities: skipping is used to implement such features as breadcrumb navigation;
the user can switch between activities freely. On switch, the process deactivates the current activity and
activates another.

../media/tutorials/models/agile.zip

46 Process Tutorials

The pattern is as follows:

» Each "skippable" flow sequence is implemented as a process or a task type: the sequence has the activity
reflection type enabled so it can be triggered by the Execute task.

» The sequence is executed by an Execute task of a wrapper process, which wraps the Execute task in the
skipping mechanism.

» The wrapper process takes a parameter with the current step: if the current step does not correspond to the
required step, the Execute task is not executed.

» The wrapper process is called as a subprocess from an orchestrating main process.

« If the skippable flow sequence signalizes that it should be deactivated, the Executable task handles the
signalization, deactivates the wrapper process and activates another wrapper process.

41.1 Designing the Skeleton

We will create the main process that will run a series of Reusable Subprocesses. In our case the Reusable Subpro-
cesses will run a simple process with a User task, instead of the Execute task so we can keep it simple.

Design the subprocess:

1. Create a BPMN-based process that will hold the Activity. We will refer to this process as the step.
The step holds the activity that you want to execute or omit depending on the business data, so this could be

the dispatch order or payment order; the process would be more complicated in real-word scenarios.

2. Unselect the Instantiate Automatically option in the process properties to prevent bogus instances of the step
process.
3. Define the parameters of the activity as required.

Use a task that will stop the execution, so you can check the behavior of the process easily: for example, use
the User task and design a form, for example, with a submit button.

Design the coordinating parent process:

1. Create a BPMN-based process with a flow of Reusable Processes: set the step process as their content:

In a new process definition, insert a None Start Event and a few Reusable Sub-Processes connected by
normal flows so that one instance of the Reusable Processes is running at a time.

4.1 Agile Processes 47

lc] Flow.gobpmn 2

My E v vy @ & | 100% * |l I+ | | A ¥ NDefaultFant v .~
€ flow »

Reusable Subprocess2

O *Properties 22 §! Problems ¢ ErrorLog B Console

@& Reusable Subprocess : Reusable Subprocess1

| =
* Detail Name: |Reusable Subprocess1

Referenced Process Name: I'omitting::step

Inline Event Subprocess: [

You have a functional model: run it and check that the process instance has one step sub-Processes running
at a time and that the step sub-process is not instantiated as its own process instance.

48 Process Tutorials

=% Model Instances | ¢ Model Instance #8004 5% 7

~ General Attributes

@
k3
L
>
2
E.
0
a]

ID: (8004 Initiated: [2017-09-22 13:48:46 | status: [Finished 2017-09-22 13:49:00

Model: "agileProcessf 1.0 (2017-09-22 13:48:46)
~ Model Instance Explorer

» 4 Properties
= 4 Module Instances
~ % Module:agileProcess
~ flow : FINISHED
~€) Reusable Subprocess1[step] : FINISHED
O Diagram:main
+{) Reusable Subprocess2 [step] : FINISHED
> Diagram:Main
4 Signal Queue

» Expression Evaluator

.~ Diagrams #8004 &

: Reusable Suupvooessl Reusable Suupmuessz

[51EP] {s«epl | >O

O Alow:Main % | £ step:Main

Figure 4.1 Model instance details of a successful run

41.2 Designing Omitting

The omitting mechanism of the step process will check if the given subprocess instance actually needs to run: we
will send the subprocess the input for the condition from the parent process.

TODO: The goal is to create the skipping and omitting mechanism inside the Subprocess around an activity. The
activity represents individual steps of the Process which we want to be able to skip or omit.

Let's design the omitting mechanism:

1. In the step process, design the evaluation of the condition:

(a) Define the omitCondition parameter of type Boolean.

(b) Design the workflow that will avoid the activity and that will be used when the omitCondition will
be true.

4.1 Agile Processes

49
2= outline 2 % = 1% % = B | k subprocess.gobpmn 2 = g
Tree| Overview T2 v | 5 " & @ & [100% - |1 L A efanlt Fank - -
~C subprocess (BPMN-based)
< omitCondition : Boolean © subprocess »
3 Mmain » Palette B
r @ Activity % o
O 3
k3 (= Gateways @
‘ B (= Start Events @
[omitCondition | O @ @
LN L

= Intarmadiska Fvanke e

(c) Make the flow pointing to the activity the default flow.

2. In the flow process, pass the omitCondition argument to each Reusable Process.

We will make it depend on global Integer variable lastSuccessfulStep but in a real solution, it should depend
on business data:

» on the first Reusable Subprocess omitCondition —-> lastSuccessfulStep >= 1 (When
the last successful step equals or is larger than 1, the condition is t rue.)

» on the second Reusable Subprocess omitCondition -> lastSuccessfulStep >= 2
(When the last successful step equals or is larger than 2, the condition is t rue.)

3. Test the process, set the initial value of lastSuccessfulStep to a value (0, 1, and 2) and run a model instance
with the value. Check the behavior of the subprocesses: make sure the skipping works as expected.

50 Process Tutorials

< Modelinstances | % Model Instance #8006 52

fFE o [

L.
%

ID: 8006 Initiated: (2017-09-22 14:05:20 Status: |Running
Model: [agileProcess - 1.0 (2017-09-22 14:05:20)

+ 4 Properties
= 4 Module Instances
~ % Module:agileProcess
~ % Vvariables
o lastSuccessfulStep: 1
~€ flow : RUNNING
> Diagram:Main
~C Reusable Subprocess1 [step] : FINISHED
F

T
~€ Reusable Subprocess2 [step] : RUNNING
£ Diagram:Main
4 Signal Queue

./ Diagrams #8004 -~ Diagrams #8006 = Fe®a&aas$ =o

o (=] ©

omitCondition

Log

£ step:Main > step:Main 2

Figure 4.2 Run with lastSuccessfulStep set to 1. The subprocess that used the omitting flow displayed
below.

4.1.2.1 Real-World Adaptations

« In real models, you omit different types of Activities:
Define the Activity in the step sub-process as the Executable task type and pass its activity as a parameter of
the sub-process along with the condition parameter.

+ To evaluate the conditions for omitting, use business data persisted in the database. Modify these as part of
each step sub-process.

41.3 Designing Deactivation

The deactivation mechanism terminates the current sub-process instance under specific circumstances. It could be
either when it receives a signal or when a condition becomes true.

We will use a Signal: On the activity in the step process, an interrupting Catch Signal Intermediate Event will wait
for the Activity to throw a Signal: when this happens, the Activity will be deactivated. The outgoing flows of the
intermediate event will enter a No Exit End Event so they terminate the sub-process instance without letting the
subprocess produce a token: we do not want the parent process to continue the flow.

To sum it up, when the Activity throws the Signal in one of the step instances:

4.1 Agile Processes 51

1. The Activity is terminated by its Catch Signal Intermediate Event;
2. The step subprocess instance finishes.

3. The coordinating process instance finishes since no sub-process instance is running.

To design the deactivation mechanism, do the following:

1. Adapt the Activity in the step process so it throws a Signal when it should be deactivated; for example, if you
are using a User task, edit its form so it calls sendSignal (false, {thisModelInstance() },
"deactivate") when the user clicks a "Deactivate" button.

2. Adapt the step so when it receives a Signal it finishes:

(a) Add an interrupting Intermediate Catch Signal Event to the boundary of the Activity (set the filter to catch
any signal from the activity, for example, { r:0bject -> true}).

(b) Connect the event to a No Exit End Event:

The event will consume the token of the reusable sub-process just like Simple End Event but it does not

produce a token that would leave the sub-process. We can create another token on another sub-process
instance.

|l step.gobpmn 2 = g7

mvE vy Y & & | 100% v |l I~ 11w A v DefaultFank v ~ v - ~ # & 4

< Palette P
% o

EarS
= Activities @
O @

(= Gateways w

O @

(= Start Events

O.@.@

L_/Intermedlate Events @

Co®00®

© decoe

o o e (e

[Properties 22 ! Problems & Console " ¥ = 8

© cCatch Signal Intermediate Event

+ Detail Name: Status:

v
Filter: { s:0bject -> true} Edit...
({T:Boolean})

Signal: Edit...

(Reference<T=)
Isinterrupting:

Description:

3. In the coordinating Process, change the Reusable Subprocesses to Inline Event Subprocess. Note that only
inline event sub-processes can finish with a No Exit Event. They are executed as part of their parent: if
defined in a process, they create process instances (while non-inline-event subprocesses create subprocess
instances).

52 Process Tutorials

T T

™ # ""'
L] L]
[Step 1 i [Step 2 i
I | |]
—|-J| [step] I —|-J| [step] I —-
% y Y.
b — - b — -
4. Run the model and deactivate it in one of the steps.
2 Model Instances | <% Model Instance #8007 &2 fFE WO Q= @b = B8
ID: 8007| Initiated: (2017-09-22 14:27:29 Status: (Running
Meodel: (agileProcess - 1.0 (2017-09-22 14:27:28)
» ¢ Properties
~ 4 Module Instances
~ % Module:agileProcess
~ %% Variables
o lastsuccessfulstep: 0
~€) flow : RUNNING
£ piagram:Main
~{ Reusable Subprocess1 [step | : RUNNING
I
4 signal Queue
< Diagrams #8004 <. Diagrams #8006 <. Diagrams #8007 £ e @a$ =n8

omitCondition

Log

> step:Main 3

Figure 4.3 Model instance deactivated in the first subprocess. The diagram with the activity deactivated by
the Catch Signal Event is below.

41.4 Designing Activation

Now we can omit already performed activities and we can deactivate them. To get all the features of agile processes
we now need to create the activation mechanism that will create a step instance when a step is deactivated. This
will allow us to switch from one step to another arbitrarily.

To be able to do this, we need to let the parent process know which task it needs to create: we will pass the
information as a parameter to the step process:

1. Add the id Integer parameter to the step so that you can start a particular sub-process after deactivation.

4.1 Agile Processes 53

%. GO-BPMNE |g= Outline 22 | = 8 | i step.gobpmn &2
BB v E v~y YU @& 100% v [~~~ A ~pefaultFont ~ I~

Tree| Overview C© step *

w £ step (BPMN-based)
< omitCondition : Boolean
£ Main
O
o
¢
¥ DTask2
@ No Exit End Event

O~ O—

[omitCondition]

2. Add information on which step should be activated after deactivation: sendSignal (false, {this«
ModelInstance ()}, goto). Inaform, the "goto" information could be based on user input. If you are
using a User task as your activity, the Deactivate button turns into a Go To Activity button. Also consider
navigating away from the to-do since you will be looking at the to-do of the deactivated task if you do not.

3. Add the Signal Start Event: since all Signal Start Events in all steps will be listening for a Signal, define its
filter to match the id parameter which is sent as part of the Signal (goto). It must match the id of the step: {
activateStep:Integer —> activateStep == id }

54 Process Tutorials

mitCondition |

Taskl \

Log

4. Inthe coordinating process, add the id parameter value to the reusable sub-processes and the goto parameter
if you added the goto parameter to your subprocess.

| Flow.gobpmn 831 = g
v v@E vy Y @, E;[mo% vl iv i 1v A v DefaultFont v ~ ~ - 7 & &
© flow *
¢ Palette b
% =}
s
= Activities @
= Gateways “
(= Start Events £

-

0000

£ Intermediate Events <

60 @ 0N
T Properties 2 |§! Problems @] Error Log B Console 4 v = 8
@ Reusable Subprocess : Reusable Subprocessi
= I Parameters: omitCondition -> lastSuccessfulStep >= 1, id -» 1 Edit

* Parameters

|

4.2 Creating a Model Instance from Document and Navigating to its To-Do on Submit

5. Run the model.

¥ Model Instances | Model Instance #8009 &

~ General Attributes

1D:

8009 Initiated: (2017-09-22 14:54:11

Status: [Running

Model: |agileProcess - 1.0 (2017-09-22 14:54:11)

~ Model Instance Explorer
} 4 Properties
~ 4 Module Instances
~ % Module:agileProcess
» % Variables

- = flow : RUNNING

> piagram:Main
»{J Reusable Subprocess1 [step] :
& Reusable Subprocess1 [step] :
»& Reusable Subprocess2 [step] :
» & Reusable subprocess [step] :

FINISHED
FINISHED
FINISHED
RUNNING

G
%

4 Signal Queue

» Expression Evaluator

.~ Diagrams #8009 2

”

{Reusable Subprocess1} {Reusable Subprocess2}

1]

O—»I Istep] i i [step] i
i \ ;

1
\ o

/!

> Flow:Main 2 | step:Main

41.41 Real-World Adaptations

+ Typically, you will skip to a step based on input provided by a user in a to-do: in such a case, you will need to

adapt the respective form so it passes the go-to data: a listener could send the signal with a goto value from
an input field.

4.2 Creating a Model Instance from Document and Navigating to its To-Do on Submit

To create a model instance from a document and then navigate to one of its To-dos, do the following:

1. Open the form of your document:

« For ui-module forms, define a listener that will create the model instance as follows:
(a) Attach a listener of the required type to a component.

(b) Create the model instance in its persist action, for example, createModelInstance (true,
getModel ("myModelName"), null)

(c) Define a listener with the Submit action (it represents the moment when you want to submit the
data and navigate away from the document).

56 Process Tutorials

B Edit Listener

Basic | Advanced |*Actions| Expression
[submit
Persist
createModelInstance(true, getModel("conditionalVsVisibility"), null) b Edit...
") save action ({human::Todo, human::SavedDocument : void}):
Edit
Validate Cancel | OK
« For forms-module forms, define the following expression on the respective component listener (typically
the click listener of an action component, such as a Button):
{ e —> createModelInstance (true, getModel ("runMe"), null); Forms.submit ()}
= RunMeForm.form &2 = 7
O~~~ Jd W & &l1wow ~ |-~ A~ pefautFont ~ / ~ - ~ F 4 5
E RunMeForm . Palette b

[; Select

[= Container Compo...

[vertical Layout

= Input Components <
o Text Field

B R S

Form| Methads

[Properties 2 |[f] Problems = ¥ =1

= Button

* Detail BID: Modeling Id: | ddbJYLUDEei378qgMMFTQg

-ﬁcapticn: "Run Model Instance"” Edit..

(string)

Aclick Listener: { e -> createModelInstance(true, getModel("runMe"), null); Forms.submit()}

Edit...
({Forms::ClickEvent : void}) !

2. Optionally, define the Navigate property in the document definition so the document navigates to a to-do
generated by the model instance when submitted:

\navigates to the first to-do generated by the document:
{todos:Set<Todo> -> new TodoNavigation(todo -> todos[0], openAsReadOnly -> false)}

Chapter 5

Data Model Tutorials

 Creating Custom To-Do List

* Validating a Related Record

5.1 Creating Custom To-Do List
Important: To complete this tutorial, you need the enterprise edition of PDS with SDK installed.

Typically, the default To-Do list will not cut it in the real world of business and you will require custom business-
related data for a to-do while retaining the related mechanisms, such as, priority of the todo, its allocation, locking,
annotations, delegation, substitution, etc.

Since the Todo is represented by the Todo record which is a system record, you cannot simply add a field to it.
However, you can create a new Record related to the Todo Record and add the business data to this Record: in this
tutorial, we create the TodoItem record with an additional field and a relationship to the Todo record:

» To create instances of Todoltem on runtime, we will create the record in the i ssueAction parameter of

the User tasks.

» To query the to-do information of a Todoltem record, we will use joins from the Todoltem to the Todo.

Note: The pattern of records related to system records can be applied analogously to other system
records, for example, to extend the data held by Person.

5.1.1 Creating the Data Model
Before you start, create a project:

1. Open the Modeling perspective in your PDS.
2. Go to File -> New -> GO-BPMN Project.

3. In the pop-up enter the project name custom_todo_list_model and click Finish.

58 Data Model Tutorials

Since Todo is a system record and system records cannot be extended directly, you need to create a record that
will represent our todo item with the business data and is related to the Todo system record:

1. Create a module that will hold the data hierarchy:

(a) Go to File -> New -> GO-BPMN Module.
(b) In the popup, do the following:

+ Select the custom_todo_list_model project.
* In the Module name field, enter custom_todo_list_data.

» Unselect the executable module option since this module is intended as a module import and never
be instantiated by itself.

(c) Click Finish.
2. Create a data type definition: right-click the module and go to New -> Data Type Definition.
3. Create the shared record with the business data, TodoItem:

(a) Right-click the canvas in the graphical editor and go to New > Shared Record.
(b) Enter the record name TodoItemn.

(c) Insert the field priority of type Integer into the TodoItem record.
4. Establish a relationship to the Todo record:

(a) Right-click the canvas in the graphical editor and go to New > Record Import.

(b) Inthe human module, select Todo (alternatively start typing t odo) and click OK.

£ *custom-todo-list-data.datatypes & =

mryE v vied @ @ | 100% » |l iv 1 I A v DefaultFant v ~ v - « ® 4
3 main
i Palette
N
@ © select Record Type -
= Record Types
T U IO UG Y O G = O G Y I ST —
Elnavi ODE@HE=
[organizationunit > RoleUnit (= Enumeration Types
—— Eperformer =
Todolt =
ﬂ B Person > Performer
71 +id : Integer EQUH)’TOdC % (= Connectors
~+priority : Integer I role > Roleunit /<7 ﬁ kY
E rRoleunit > Performer - -
B savedDocument L/Annota’tlens
[savedDocumentNavigation > Navigation [g /"" = e é
tod|
cancel || OK

(c) To create a relationship between Todoltem to Todo, drag the quicklinker o from Todoltem to Todo.
(d) Select the relationship and set the properties of the Todo end in the Properties view:

* Name: todo

+ Multiplicity: Single (one Todoltem relates to one Todo)

5.1 Creating Custom To-Do List 59

41 relationship-to-system-record.datatypes 3 = B
mvE v@E vy Y &, =, | 100% v|l 1w 1 1 A& v nefaulrFont v~ w - w 2 &
3 Main
human::Todo o
|
T 1i+id : Integer
Todoltem E.J 1 (v+itle : String
= I+start: Date
o (+finish : Date

71 +id : Integer

=1 ba
+priority : Integer todo | !Gv+state @ String

(interruptionReason : String
(r+task : String
(++modelinstanceld : Integer
(rallocatedTold : String

[Properties &2 |g! Problems €]Error Log & Console]]

/1 Data Relationship : [Todoltem,human:Todo]

Name: todo
Visibility: private protected @ public
Multiplicity: @ Single

Set
List mn name default
* Target] i
_ Flags: Composition Used for equals
FYETGECRME PP Edit..
= (String)

Note: To display the fields and methods of the imported Todo record, right-click the record
and under Compartments select the required items.

5.1.2 Creating the Todo Iltems

Todos are created when a User Task of a process instance is executed: to create the todo item related to the todo,
create it in the issueAction closure of the User Task: issueAction is executed right after a todo is created and
has the todo created by the User Task as its input parameter.

Let's create a process that will create a Todo and its Todoltem:

1. Create the module that will hold the process:

(a) Right-click your project and go to New -> GO-BPMN module.

(b) Inthe module name field, enter custom_todo_list_process and click Finish.

(c) Import the custom_todo_list_data module (double-click the module Imports node in the custom «
todo_list_process module).

2. Create the process definition and design the process:

(a) Right-click the custom_todo_list_process module and go to New -> Process Definition.
(b) Enter the name CreateTodoItem and select the BPMN-based process option.

(c) In the process, create a local variable newTodoItem of the Todoltem type (in the Outline view of the
process definition, right-click the root node and select New > Variable). It will hold the new todo item,
S0 we can pass it to the todo form where we will edit its priority field.

(d) Design a process flow with a User task.

60 Data Model Tutorials

(e) Inthe Properties of the User task, define the parameters of the task: in the 1 ssueAct ion parameter,
create the Todoltem record over the to-do:

title /+ String */ —-> "Dummy Submit for Guest",

performers /x Set<Performer> %/ —-> {getPerson ("guest")},

uiDefinition /% UIDefinition %/ —> submitForm(newTodoItem) ,

issueAction /* {Todo:void} */ -> { t:Todo -> newTodolItem := new TodoItem(todo -> t)}

Note that the submitForm does not exist yet; we will create it in the next step.

Note: If you attempted to change the value of the related to-do directly, for example, on a flow assign-
ment with newTodoItem.todo.title := "";, you will get a validation error since Todo is a
system record and fields of system records cannot be accessed directly.

5.1.2.1 Creating the Form for the To-Do
Create the form that will be used to gather the priority data for the Todoltem and submit the todo:

1. Right-click the custom_todo_1list_process module and go to New -> Form Definition.

2. Enter submitForm as the name of your form and make sure the Use FormComponent-based Ul is not
selected.

Note: The Use FormComponent-based Ul setting defines which module of the Standard Library
is used to create the form: when not selected the ui module is used. Forms of the ui module are
event driven. When the option is selected, the forms module is used: the forms are created
more like in Vaadin. Generally the latter option is more powerful but requires more programming
skills and is considered experimental in this version.

3. Create the form parameter newTodoltemParam of type TodoItem (in the Outline view of the form definition,
right-click the root node and select New > Parameter).

4. Inthe editor with the form, insert the following components and define their properties in their Properties view.

» Form Layout
» Text Box with properties:

— Label: "Priority:"

— Binding: snewTodoItemParam.priority
« Button:

— Text: "Submit"
— ActionListener on the button with Submit selected on the Action tab

£ custom_todo_list_data.datatypes il CreateTodoltem.gobpmn |z *submitForm.form 22

v g vy Y ® & | 100% o Edit Listener

Basic | Advanced | *Actions Expression

Submit

Persist

Save action ({human:Todo, human::SavedDocument : void}):

Navigation (human::Mavigation):

Validate Cancel OK [}

../ui-vaadin/index.html
../forms-vaadin/index.html

5.1 Creating Custom To-Do List 61

5.1.3 Creating a List of Todo ltems

Now we will create a page that will display the list of the todo items that have not been submitted yet (their todo is
alive) and are assigned to the current user.

First, create a query that will retrieve todo items:

—_

. Right-click the custom_todo_list_data module and go to New -> Query Definition.

N

. In the query editor, click Add.

3. On the right define the query name as get TodoItems, set TodoItem as the record type, and set an
iterator name, for example t 1.

4. At this stage, the query returns all Todoltems. Restrict it so it returns only those todo items that are related to
a LIVE todo:
(a) Join the system todo table: select the Join Todo List.
(b) Define the iterator for the returned todos in the Query Todo lterator, for example t.
(c) Inthe Todo List Criteria, define an expression that filters the todos from the joined todo list:

//returns todos of the current person:

new TodoListCriteria(person —-> getCurrentPerson(),
//exclude interrupted, accomplished, suspended todos:
includeAllStates -> false,
//exclude rejected todos:
includeRejected —-> false,
//exclude to-dos allocated by other persons:
includeAllocatedByOthers -> false,
//exclude to-dos of substitutes:
includeSubstituted -> false)

5. Now the query returns all todo items with a to-do of the currently logged-in person. However, only todo with a
matching id should be returned. Define the condition in the Condition property:

ti.todo.id == t.id

The query is ready and you can create a document with a form that will display the todo items:

1. Create the custom_todo_1list_ui non-executable module that will hold the document.
2. Import the custom_todo_list_data module.

3. Create the document that represents the page with the todo items: Right-click the custom_todo_list_uimodule
and go to New -> Document Definition. Create a document with the properties:

* Name: todoItemsList
» Title: "My Todo Items"
* Ul definition: 1istOfTodoItems ()

4. The Ul definition does not exist yet, let us create it:

(a) Right-click the custom_todo_list_ui module and go to New -> Form Definition.
(b) Setthe form name to 1istOfTodoItems and click Finish.

5. In the editor with the form, insert a Vertical Layout.
6. Into the layout, insert the Grid component and define its properties:

(a) Set Data Kind to Query
(b) Set Datato getTodoItems ()

62 Data Model Tutorials

(c) Create Columns with the content set to Property path with the respective custom todo item properties,
for example, TodoItem.todo.id.

7. Create a Column that will contain a link:

(a) Set Content to Closure and define the closure that returns the link content below (You need to use the
Closure type since a property path of type Integer cannot use the renderer Link):

{ i:TodoItem -> i.todo.id.toString() }

(b) Set the Renderer to Link.
(c) Create a RendererClickListener on the Link:
i. Right-click the link in the form and open the Event Handling tab of the Properties view.
ii. Under the Private Listeners section, click Add.
iii. On the Actions tab, select the Navigation option and add the navigation expression:

def TodoItem ti := ((_event as RendererClickEvent).rowObject) as TodoItem;
new TodoNavigation(todo —-> ti.todo, openAsReadOnly -> null)

Iz listofTodoltems.form &3

Basic | Advanced |*Actions Expression
; "1 Submit
E /8 (g & “Priority’

Todoltem todoid | Todoltem.priority ; Persist

") save action ({human::Todo, human::SavedDocument : void}):

[Properties 2 |[2! Problems B Console Navigation (human::Navigaticn):

— |def TodoItem ti := ((event as RendererClickEvent).rowObject) as TodoItem;
= new TodoNavigation/(todo -> ti.todo, openAsReadOnly -> null)

_ Private Listeners
* Event Handling Listener Type

"I Fire application event:

Public Listeners

Component | Listener Name

Validate Cancel OK

If you haven't done so yet, now is the time to test the modules:

8. Run PDS Embedded Server by clicking the Start Embedded Server button B .
9. Generate todos: right-click the custom_todo_list_process module and go to Run As > Model.

10. Upload the document with the todo items list: right-click the custom_todo_list_ui module and go to Upload
As > Model.

11. Open your browserandgoto http://localhost:8080/1sps—application and check the Docu-
ments of the guest user.

12. Check the list of to-dos: Open Documents and click My Todo ltems.

13. Click a link to navigate to the todo.

14. Stop PDS Embedded Server by clicking the Stop Embedded Server button Bl .

nenks
pnents
)onents

http://localhost:8080/lsps-application

5.1 Creating Custom To-Do List 63

5.1.4 Adding the Custom To-Do List to the Navigation Menu

Now this is all nice and neat but the user can still access the default To-do List page: generally you want to substitute
the To-Do List in the Application User Interface with our to-do item list.

To be able to do this, you need to modify the Application User Interface and deploy it to your server:

1. Go to File > New > Other
2. In the popup dialog, select LSPS Application and click Next.

3. In the updated popup, enter the maven artifact details and click Finish.

This will generate the sources of the Application User Interface. For more details, refer to documentation on
development of Custom Application User Interface.

Let us remove the default To-Do List item and add our list item to the navigation menu:

1. Since this is Java code, switch to the Java perspective.
2. Remove the To-Do List item:

(a) Openthe <YOUR_APP>.vaadin.core.AppLayout. java file.
(b) Comment out the respective line in the buildMenu () method.

@SuppressWarnings ("unused")
protected void buildMenu() {
/+1if (ui.getUser () .hasRight (HumanRights.READ_ALL_TODO) || ui.getUser () .hasRight (Human
todoMenultem = navigationMenu.addViewMenuItem (TodoListView.TITLE, TodoListView.ID,
}/
if (ui.getUser () .hasRight (HumanRights.ACCESS_DOCUMENTS)) {
documentMenultem = navigationMenu.addViewMenulItem (DocumentsView.TITLE, DocumentsVie

}

(c) Build the application and run the SDK Embedded Server: open the run configuration drop-down menu
and click the build launcher and then embedded server launcher for you application.

customTodolList - Java - custom_todo_list_app-vaadin/src/main/java/org/acme/custom_todo_list_app/vaadin/core/AppLayout.java - Living Systems Process Design Suite

(il Rt AR R RE DR N-Ral-N1 .‘?m@‘f\ﬂtg’w'{?"’@@' v [Quickaccess ||| & o [@)
1custom_tedo_list_app Embedded Server Launcher :
[# Package Explorer &2 5 om L3 app Maven build = O || Outline 2 = g

» & custom_todo_list_app-ear
» & custom_todo_list_app-ejb

) { a - L] L
vice.getTodoCount (new TodoListCriteria()); Bw e W ¥

org.acme.custom_tedo_list_app.v
~® AppLayout
throw new RuntimeException(e); &F CONTENT_AREA_ID : Skring
&F serialversionuiD: long
todoBadge: int
documentBadge: int
runModelBadge: int
todoMenultem : Menultem
documentMenultem : Menultem
runModelMenultem : Menultem
contentArea : CssLayout
menuArea: CssLayout
ui: Lspsul
navigationMenu : NavigationMe
todoservice: TodoserviceLocal
documentService : GenericDocui
modelManagementService : Moc
personservice : PersonserviceL.o
zry { o ; cachedDocuments : List<Docum

navigationMenu.setPersonPicture(personService.getPersonPicture(ui.getUser().getPers @ .attach() : void

} catch (PersonNotFoundException | PersonPictureException e) {
ui.getHub().handleError(e);

entService.getNonParametricDocuments().size();

~Zcustom_todo_list_app-vaadin
~i#®src/mainfjava
~ 3 org.acme.custom_todo_list_app.vaadin.core
» [0 AppFormConnector.java
» i1 AppHub java
+ [1] AppNavigator.java
» [AppServlet.java
» i3] AppSettingsView.java
» i1 AppUIProvider.java
» [} AppView.java
»] LoginUljava
* [LspsULjava
» i) NavigationMenu.java
» 5 org.acme.custom_todo_list_app.vaadin.page
» 8 org.acme.custom_todo_list_app.vaadin.popu
» 8 org.acme.custom_todo_list_app.vaadin.repoi
» i org.acme.custom_tedo_list_app.vaadin.util
» @ src/main/resources
» = JRE System Library [java-8-oracle]
» & Referenced Libraries

ModuleCriteria criteria = new ModuleCriteria();
criteria.setIncludeImports(false);
criteria.setIncludeExecutableOnly(true);
criteria.setIncludelatestOnly(true);
ModuleList findModules = modelManagementService.findMedules(criteria);
runModelBadge = (int) findModules.getTotal();

¥

B @suppressWarnings("unused")

protected void buildMenu() {
/*if (ui.getUser().hasRight (HumanRights.READ ALL TODO) ui.getUser().hasRight (HumanRi
todoMenuItem = navigatienMenu.addViewMenuItem(TodoListView.TITLE, TodoListView.ID,

*/
if (ui.getUser().hasRight(HumanRights.ACCESS_DOCUMENTS)) {
documentMenuItem = navigationMenu.addViewMenuItem(DocumentsView.TITLE, DocumentsVie

}
if (ui.getUser().hasRight(EngineRights.READ_MODEL) && ui.getUser().hasRight(EngineRight
runModelMenuItem = navigationMenu.addViewMenuItem(RunModelView.TITLE, RunModelView.

~ m enableMobileMenuClose() : void
»@ new JavaScriptFunction() {..}

s calculateBadges() : void
/7 whitestein-internal: do not comment out this stuff, otherwise it will break when the O ges()

> eclipse-target if (false) { //NOSONAR +_buildMenu(): void
b // Examples: = hasRightToOpenDocument(Strir
&=src // 1. add link to a custom document but only if the user has rights to access it. O T et
» &> target if (hasRiaghtT ument ("ExampleModule: :exampleDoc")) { 9 .
E pom.xml .
,p . . 1] Problems 2 @ Javadec [E Declaration B Console v =7
¥ & custom_todo_list_app-vaadin-war
»® custom_todo_list_model 0 errors, 56 warnings, 8 others
Description Resource Path Location Type

» & Warnings (56 items)
* i Infos (8items)

™ LSPS News Connection: custom_todo_list_app Embedded Server (admin) Writable Ssmartinsert 1:

../custom-application/generatingdefaultapp.html
../custom-application/generatingdefaultapp.html

64 Data Model Tutorials

Important: Note that this is a different server from PDS Embedded Server and has your
application hot-deployed.

(d) Open the browser and check that the To-Do List item is no longer available in the navigation menu.

3. Now add the navigation item to the custom to-do list:

(a) First copy the fully qualified name of the module with the document: right-click the document definition
and select Copy Qualified Name.

% custom_todo_list_ui.docs 2

Documents
Documents a Document Details
F4
Name: [todoltemsList
lkyp X) Title: "My Todo Items"

(String)

B todoltemsList

) ters: Name Type
Copy

Copy Qualified Name N

Search For

Open Call Hierarchy

Disable ition: 1ist0fTodoItems()
Change Status To
Accessrights: true

Ranlaant

(b) Add the document to buildMenu () of <YOUR_APP>.vaadin.core.AppLayout.java+
: paste the qualified name of the document to prevent typos. Do not forget to remove the if statement
around or set its condition to true and the other example items as applicable.

if (hasRightToOpenDocument ("custom_todo_list_ui::todoItemsList")) {
navigationMenu.addDocumentItem (

"My Todo Items",

"custom_todo_list_ui::todoItemsList",

null,

FontAwesome.ADN,

null,

null

4. Rebuild the application and restart the server preferably in debug mode.

5.1 Creating Custom To-Do List 65

customTodoList - Modeling - custom_todo_list_app-vaadin/src/main/javaforg/acme/custom_todo_list_app/vaadin/core/AppLayo

rﬂv 0'0'@' @Egv@bjE#vaQVilINn:rahlc 'E@anii-' E_v
custom_todo_list_app Embedded Server Launcher
5. GO-BPMN Explorer 2 & B - - 2custom_todo_list_app Maven build lo_list_ui.di

3

» (= custom_todo_list_app-ear Debug As
v (= custom_todo_list_app-ejb

» (& custom_todo_list_app-embedded
»{ custom_todo_list_app-tester

Debug Configurations...
Organize Favorites... ts.READ £
todoMenuItem = navigationMenu.addViewMenul

v Z custom_todo_list_app-vaadin }
» & custom_todo_list_app-vaadin-war ¥/
P - . pp if (ui.getUser().hasRight(HumanRights.ACCESS_L
~i¥ custom_todo_list_model documentMenuIltem = navigationMenu.addViewh
» =i BAM Library N
’!&Exchang.ecllt.entubrary if (ui.getUser().hasRight(EngineRights.READ_M(
» =i Scaffolding Library runModelMenuItem = navigationMenu.addViewt
» &l Sharepoint Client Library i c
¢ S ry
» i Social Library navigationMenu.setPersonPicture(personSery
ol e Adardl ke 1 smmteh (DAarcan Ma+CriinAdCvwrantinan | DarcanDi -+

Figure 5.1 Rebuilding the application

5. Upload the ui module and run the process module.

5.1.5 Localizing Name of the Menu ltem

You can now access the document directly from the navigation menu, but it contains the ??? characters: these
signalize that the system failed to find the localization string. Let's create the string:

1. Open properties file in the com.whitestein.lsps.vaadin.webapp package (<YOUR_A<«
PP>-vaadin project), for example, the localization.properties file with the default localizations.

2. Add the localization key.

navigation menu items

nav.todoitems = To-do List
nav.documents = Documents
nav.runProcess = Run Model

This is the new key:
nav.itemsList = My Todo Items

3. Adapt the addDocumentItem() call: navigationMenu.addDocumentItem ("nav.«
todoitems", "custom_todo_list_ui::1listOfTodoItems", null, FontAwesome.<«
ADN, null, null);

4. Rebuild the application and restart the server.

5.1.6 Excluding the Todo Items Document from Documents

Right now the document is accessible from the dedicated navigation menu plus it is available as a document in the
Documents menu. To remove it, open the Document sView class and adapt the 1oad () method; for example:

private void load() {
try {
List<DocumentInfo> documents = genericDocumentService.getNonParametricDocuments () ;
for (DocumentInfo document : documents) {
//Added this to exclude the document from the table:
if (!"custom_todo_list_ui::todoItemsList".equals (document.getId())) {

container.addBean (document) ;

66 Data Model Tutorials

Note that you will need to adapt the calculation of documentBadge on documentMenuItem with the number
of available documents.

Simple example of badge calculation

//constant with the document name:

private static final String DOCUMENT_IN_MENU = "custom_todo_list_ui::todoItemsList";
private void calculateBadges () {
try {
todoBadge = (int) todoService.getTodoCount (new TodoListCriteria());
try {
List<DocumentInfo> nonParametricDocuments = documentService.getNonParametricDocuments () ;

//exclude of the document from the count:
documentBadge = 0;
for (DocumentInfo documentInfo : nonParametricDocuments) {
if (!DOCUMENT_IN_MENU.equals (documentInfo.getId())) {
documentBadge++;

} catch (ErrorException e) {
throw new RuntimeException (e);

}
ModuleCriteria criteria = new ModuleCriteria();
criteria.setIncludeImports (false);
criteria.setIncludeExecutableOnly (true);
criteria.setIncludeLatestOnly (true);
ModuleList findModules = modelManagementService.findModules (criteria);
runModelBadge = (int) findModules.getTotal();

} catch (RuntimeException ex) {
LspsUI.getCurrent () .error (ex);

5.2 Validating a Related Record

To validate related records of a record (cascade validation), do the following:

1. Define the constraints for the related record.
2. Define the constraint that will trigger the validation of the related records:

« If the relationship is to-one:
(a) Set the record property to the relevant property path, for example, Book .author.
(b) Set the constraint type to Recordvalidity.

« If the relationship is to-many:
(a) Set the record property to the relevant property path, for example, Author.books.
(b) Set the constraint type to RecordCollectionvValidity.

Important: Make sure the validation does not result in infinite recursive validation (the
relationship record does not validate the parent record).

3. Callthe validate () function on the main record.

Example: Underlying data model Constraints

def Author author := new Author (books -> {new Book(title -> null)},
name —-> null); validate (author, null, null, null); Since the Author.«
books.RecordCollectionValidity constraint defines RecordCollectionValidity, the validate()
checks also the created book constraints and violations on the constraints Author.name.NotNull and
Book.title.NotNull are returned.

Chapter 6

Model-Update Tutorials

This tutorial demonstrates the possibilities of the model-update feature. Mind that updating models can be
complex: consider using another approach such as agile processes pattern to prevent model update.

Model Update Examples

6.1 Model Update Examples

This series of simple tutorials demonstrate how to update the model of running model instances.

Mind that updating models can be very complex: consider using another approach such as agile processes pattern
to avoid the need for model update altogether.

Generally, model update is performed in as follows:

1. Open the PDS and connect to the LSPS Server.
. Import the original model into your workspace.
. Import or create the target model into your workspace.

2
3
4. Define rules for the model update in the model-update definition.
5. Run the model update with the model-update definition.

6

. Unload the modules that are no longer used.

Note: If you are updating Java implementations as well (this is the case when updating to a newer
standard library or to a custom LSPS Application with new custom java implementations,
consider suspending the model instances that use the resources that are modified. Then you can
redeploy the LSPS Application EAR. Note that if you want to run according to both, the original and
target models, your implementations must be backward compatible (in such a case it is not necessary
to suspend the pertinent model instances).

This section contains examples of simple model updates with the following modifications in the target models:

* variable value
« task parameter change
» event change

+ data type change

../custom-application/creatingcustomobjects.html

68 Model-Update Tutorials

6.1.1 Updating a Variable Value

Required action: Update a model instance so that a variable value changes to a value derived from its original value.

In the example update, we will introduce the following changes on global variables:

< A variable will be removed.

« A variable will have its value modified to a value derived from the removed variable.

1. Design the source model with a process definition and a variable definition:

(a) Create a module with a global variable definition with the following variables:

+ varSet of type Set<String> with the initial value {"old value 1", "old value
2 n }
* varString of type String with the initial value "42"

(b) Create a process definition with a None Start Event, a Conditional Intermediate Event, and a Simple
End Event.

(c) Setthe Condition parameter of the Conditional Intermediate Eventto false to keep the model instance

running so it can be updated.

Figure 6.1 Process

2. Design the target model:

(a) Copy and paste the old module.
(b) Modify the global variables

* Modify varSet to have the initial value {"new value 1", "new value 2"}
* Delete varString
» Create varInt of type Integer with the initial value 1.

3. Create the . muc file:

(a) Right-click the parent project, go to New > Model Update Configuration and follow the instructions.
(b) Open the Variables page in the newly opened editor with your muc file

(c) Adjust the mapping if necessary: Map the new variable definition file to the old variable definition file and
varInt to varString. Mapping of VarSet should be recognized automatically after the variable
definition file is mapped.

(d) Define the transformation expressions on the new variables:

e varSet: {"transformation value"}

* varInt: toInteger (toString(old("varString")))

6.1 Model Update Examples 69

1t VariableUpdate.muc & | ol newVariableUpdate.vars 0l oldVariableUpdate.vars
Variables
Baseline Modification Transformation
-/ % newVariableUpdate
~ |0l oldVariableUpdate//1.0//oldVariable U
- O yarSet: Set<String> - 1 change {"transformation value”}
= |nitial Value A Modified property 'Initial Value'
=/ @ varString / varint : Integer - 3 char tolnteger(toString(old("varString")))
= Name A Modified property ‘Name'
= Type A Modified property 'Type'

= Initial Value Modified property ‘Initial Value'

% oldVariableUpdate

Figure 6.2 The muc file with variables and their transformation expressions

When you perform the model update, the system does the following:

1. First attempts to transform variable values according to their transformation expression.
2. If the expression does not exist, the system performs the transformation defined for the variable data type.

3. If neither the variable transformation expression nor the data type transformation exist, the variable is initial-
ized. This typically applies to variables that were added in the new model.

Note: When updating local variables of processes, sub-processes, and tasks, the update is deter-
mined by the update strategy of the parent element:

« If the strategy of the parent element is continue, the parent context is preserved. The execution
continues in the old transformed context: Its local variables are transformed as defined by their
transformation expression.

« If the strategy of the parent element is restart, the parent context is dropped and a new context is
created: any local variables are discarded and new variables are initialized. The transformation
expression on the variables is not applied.

To upload the resources and perform the model update, do the following:

1. Make sure your server with the Execution Engine, possibly the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

2. Upload the model to the server and create its model instance: In the GO-BPMN Explorer, right-click the
source module and go to Run As > Model.

3. Upload the target model to the server: In the GO-BPMN Explorer right-click the module and go to Upload As
> Model.

4. Switch to the Management perspective.

5. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

70 Model-Update Tutorials

6. In the Model Instances view, open the detail of the source-model instance and check the values of the global
variables.

2§ Model Instances | % Model Instance #39003 2 = 0

Do B BB 8P

[m3

~ General Attributes

1D: 39003 Initiated: 2014-06-26 12:34:15 Status: Running

Model: oldVariableUpdate - 1.0 (2014-06-26 12:34:14)
¥ Model Instance Explorer

+ 4 Properties

8 : Module Instances

-~/ % Module:oldVariableUpdate
-1 % Variables
o varSet: {old value 1, old value 2}
o varString: 42
+ (3 varCreating : RUNNING

4+ Signal Queue

» Expression Evaluator

Figure 6.3 Detail of the old model with old global variables

7. Perform the update:

(a) Inthe Model Instances view, click the Model Update (0)

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, check that the model instance is listed and selected in the Filtered Model
Instances section and click Next. Check the summary of the model update and click Finish.

(d) Refresh the Model Instances view: The model instance should be in the Updated status.

(e) Display the detail of the model instance.

2% Model Instances | % Model Instance #39003 & = 0

[}

oW e W % 4§
¥ General Attributes
ID: 39003 Initiated: 2014-06-26 12:34:15 Status: Updated
Model: newVariableUpdate - 1.0 (2014-06-26 12:50:03)
~ Model Instance Explorer
+ 4 Properties
= 4 Module Instances
- % Module:newVariableUpdate
@ wvarlnt: 42
o yarSet: {transformation value}
+ € varCreating : SUSPENDED

4+ Signal Queue

+ 4 Model Update History

+ Expression Evaluator

Figure 6.4 Detail View of the Updated Model Instance with New Global Variables

Note that the variables hold now the values defined by their transformation expression.

6.1 Model Update Examples 71

6.1.2 Updating a Task Parameter

Required action: Perform model update to a new model with changed task Parameters and have a post process log
information about the update.

For this scenario, you should consider whether the task can be instantiated at the moment the model update is
started or when the model instance is started after update:

« A task cannot be instantiated if it is atomic since it cannot be holding the token at that moment. Such tasks
include the Log, Assign, Lock Task, etc. Changes on such tasks are considered as a removal of the old
task and adding of a new task.

» A task can be instantiated when its task type requires asynchronous or multi-step execution, or waits for
an event. These are tasks that can hold an execution token and become a t ransaction border. Such
task types include the User, HttpCall, Web Service Client, and Server Tasks of the Standard Library and
possibly custom tasks.

For these tasks, you need to define their transformation strategy so that if such a task is running at the
moment you start the model update, or it will be running after the model instance starts after model update,
the task is handled according to the transformation strategy. The strategy can be either restart or continue:

— If the strategy is set to restart, the task ignores its old context and restarts as a new task.

— If the strategy is set to continue, the task continues in its old context.

Let us update the Performers and Form parameter of a User Task. We will change the following:

* Perfomers

{anyPerformer () } will be changed in the new model to {getPerson ("admin") }

+ Underlying Form

The form content will be changed in the new model.

We will consider the outcome of both the restart and continue strategy.

Proceed as follows:

1. Design the old model as a module with a process and define its form definition with arbitrary content.

../modeling-language/transactioninmodelinstances.html

72 Model-Update Tutorials

S GO-BPMNExp 8 = 0 ¢ taskProcess.gobpmn = 0
B s B 7 $ v B G v G W @ B [100% Y| I 1Y 11 ¥ A Y PafalE
- lé'/TsskParsmsterUpdsts € taskProcess *

+ =i Exchange Client
+ =i Sharepoint Client
+ =i Standard Library
- % oldTaskModule 1.0
+ B Module Imports
+ & myForm.form
= Il taskProcess.gobpmn
I Main
o
+ @ Task 1

o

=l Properties 2 [l Problems ©)Error Log 4" Search E Console = ¥ =0

@ Task : Task 1

Detail title * : String
Monitering "My Form Task' ' Edit
Assignments
Looping performers * : Set<Performer>
Parameters {anyPerformer ()} ' Edit...
Metadata
uiDefinition * : UlDefinition
Appearance
| |myForm(} ' Edit
25 outline 52 = 7 escalationTimeout : Duration
| Edit..
issueAction : {Todo:Cbject}
o @@ o '
| Edit..

Figure 6.5 Old model

2. Design the new model: Copy and paste the old module and modify the Performers parameter of the User
Task and modify the content of its form definition.

6.1 Model Update Examples

73

%5 GO-BPMN Explor B = O
& % B ¥
- @/TaskparameterUpdate
+ =i Exchange Client
+ Bh Sharepoint Client
+ = Standard Library
= % newTaskModule 1.0
+ B Module Imports
+ & myForm.form
- il taskProcess.gobpmn
-1 € taskProcess (BPMN-b
> Main
O
o

- ® oldTaskModule 1.0

+ B Module Imports
+ @ myForm.form

- ld taskProcess.gobpmn

- © taskProcess (BPMN-b
L2 Main
o= ; =
o= Outline 2 8
o &8 e

<] taskProcess.gobpmn 22

¢ R v

(:, taskProcess *

L £ ¢ W & 8 |100% v | mw

Task 1
O {=] 0O
Problems € Error Log Search & Console

= Properties 2

@ Task : Task 1

Detail
Monitoring

Assignments

Looping

Parameters

Metadata

title * : String

"My Form Task"

performers * : Set<Performer>

{getPerson("admin")}

uiDefinition * : UlDefinition

myForm()

escalationTimeout : Duration

Figure 6.6 New model

Plovfmcdd B

Edit...

Edit...

Edit...

Edit...

3. Create the . muc file: Right-click the parent project, go to New > Model Update Configuration and follow

the instructions.

4. Open the .muc file and on the Processes page locate the task parameter: The transformation strategy is set

to Continue by default.

74

Model-Update Tutorials

% GO-BPMN Explo 8| = O ¢l taskProcess.gobpmn |2 TaskParameterUpdate.muc 23 = B
2 & e Processes &4 % B & (-
-1 & TaskParameterUpdate Baseline Modification Transformation / §
+ =4 Exchange Client - % newTaskModule ;
+ =\ Sharepoint Client -l 1ol oldTaskModuLeHl‘OHtaskProcess.gob%
+ =4 Standard Library -/ @ Task 1 -1 change
+ % newTaskModule 1.0 - & Parameters - 1 change

+ " oldTaskModule 1.0 = performers Modified parameter ‘performers’
B TaskParameterUpdate.muc % oldTaskModule

42 Main

Baseline Value Modified Value

'-{anyPerformer()}' I '-{getPerson(”admin")}' _I
oE—— =] Over\new| It Data Types| 5] Variables |] Processes

Figure 6.7 Model update configuration with the parameter change

Note that no changes on the form are detected since forms do not require any special handling on model
update but are simply substituted with their new version.

5. Define a post process on the module that will log a message:

(@) Inthe .muc file, right-click the new module and click Create Post-process.

i. On the opened page, design the post process with a Log Task.

ii. Define the message parameter of the Log Task.

6.1 Model Update Examples 75

% GO-BPMN Explo £3 = 0 l¢] taskProcess.gobpmn le4 TaskParameterUpdate.muc &2 = d
BERE ¢ RBov B G v i ot & G 100% v Ll v Ll v A v Aafas
- lﬁ/TaskParamaterUpdata

+ B Exchange Client

+

Ei Sharepoint Client

+

Ei Standard Library

+

¥ newTaskModule 1.0

= oldTaskModule 1.0

T

= 1t TaskParameterUpdate.muc
& Pre-processing
@ todo: human:Todo
- € Module_newTaskMod.
D Main
O
o

+ @ logPostProcessMes: E Overview | [Data Types | [g] Variables | [¢] Processes € Module_newTaskModule
= Properties = O |

O Task : logPostProcessMessage

Detail message * : String

Monitoring "Executing post process on model " + o
thisModelInstance() + "." it

Assignments

Looping

Parameters

Metadata

Appearance

52 Outline 5 = g PP level : Integer
1 Edit.
o—Ga-e

Figure 6.8 Post-Process

Make sure the transformation strategies on the module, process, and task of your muc file are set
to Continue. This is the default transformation strategy.

To perform the model update, do the following:

1. Make sure your server with the Execution Engine, possibly on the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

2. Upload the model to the server and create a model instance of the old model: In the GO-BPMN Explorer,
right-click the old module and go to Run As > Model.

3. Upload the new model to the server: In the GO-BPMN Explorer right-click the new module and go to Upload
As > Model.

4. Switch to the Management perspective.

76

Model-Update Tutorials

Management - TaskParameterUpdate/TaskParameterUpdate.muc - Living Systems Process Design Suite

File Edit MNavigate Search Project Runtime Connection Run Window Help

W €% I0vOv i Bv; F Qv S viE %= 4@ 7]
Q B dModellng %Management
% Model Instances % = g & Module Management & | E To-do List 4ok B X & = O
9 02 8 B G & & & H B P Modules | Schema Update Scripts
ID Initiated Status Model Name Executabl Upload Date
8000 {2014-06-18 | Running | oldTaskModule - 1.0 (2014-06-: | | % core - 2.8 2014-06-18 15:39:47
+ ™ human - 2.8 2014-06-18 15:39:47
= ™ newTaskModule - 1.0 2014-06-18 15:39:47
< ® oldTaskModule - 1.0 o 2014-06-18 15:39:36
+ Mui-2.8 . 2014-06-18 15:39:47
Description:
Page 1 of 1, total items: 1 Page 1 of 1, total items: 5
E Console 2 = B # Logs B2 B & & = 0O
w X Gk % BA [= B Y v ID Model Instance IC Timestamp Level Description

<terminated:> /usr/lib/jvm/fjava-1.7.0-openjdk-1.7.0.60-2.4.7.0 fc19.x86_64/bin
[#]| 2014- 06- 18T15: 40: 15. 885+0200| WARNING| glassfish3.1.2| javax.en

[#]| 2014- 06- 18T 15: 40: 15.885+0200| WARNING| glassfish3.1.2| javax.en
Page 1 of 1, total items: O

Connection: LSPS Embedded Server (admin) |

Figure 6.9 Management perspective with an instance of the old model

5. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

6. Go to the Application User Interface and lock the generated to-do:

(a) Open abrowserandgotohttp://DOMAIN/lsps-application/
(b) Log in as the user guest (By default, the password is set to guest for the guest user).
(c) Click TO-DO LIST.
)
)

d) Open the to-do, which was generated by the old model instance.

(
(e) With the to-do content displayed, log out, so the guest user locks the to-do.

7. Back in the Management perspective, perform the update:

(a) Inthe Model Instances view, click the Model Update (@).

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, check that the model instance is listed and selected in the Filtered Model
Instances section and click Next. Check the summary of the model update and click Finish.

(d) Refresh the Model Instances view: The model instance should be in the Updated status. If the model
instance is in the Pre-processes state, hit the Refresh button again.

If the model instance is in the Pre-processes state, hit the Refresh button again. The model instance
is still suspended: If you check the to-do list of the guest user, the to-do is not available since the user
task is suspended.

(e) Check the Log view for the log message of the post-process.

http://DOMAIN/lsps-application/

6.1 Model Update Examples 77

- ~
Management - TaskParameterUpdate/TaskParameterUpdate.muc - Living Systems Process Design Suite - |
File Edit MNavigate Search Project Runtime Connection Run Window Help k
vl @ L R 0v0yiEYy HEes i Qv Bl e o o
qQ B @& Modeling 5% Management
2% Model Instances 7 Model Instance #8000 5 = 0 &' Module Management 52 3 K o = 0O
-
B 72| m » B & |4 P Modules | Schema Update Scripts
~ General Attributes Name Executabl Upload Date
EN-] -2.8 2014-06-18 15:39:47
ID: 8000 Initiated: 2014-06-18 15:32:40 Status: Running core
Model: newTaskModule - 1.0 (2014-06-18 15:39:47) 9l e = 36 2014-06-18 15:39:47
< % newTaskModule - 1.0 v 2014-06-18 15:39:47
~ Model Instance Explorer
+ % oldTaskModule - 1.0 v 2014-06-18 15:39:36
+ 4 Properties .
< % ui-2.8 2014-06-18 15:39:47
=/ 4 Module Instances
+ ™ Module:newTaskModule
4 Signal Queue
- 4 Model Update History
D tion:
- | oldTaskModule - 1.0 -> newTaskModule - 1.0 / Updated / 2014-06-18 15:50:18 eserprion
+ Pre-processing
Page 1 of 1, total items: 5
5 Transformation
B - Post-processing ’ B b @
Logs X § ¢ = 0
= ™ Module:newTaskModule_post
€ Modu. TaskModule : FINISHED ID Modellnstance IC Timestamp Level Description
odule_newTaskModule :
ISE: 8000 2014-06-18 15:50:1, 1 Executing post process on model core:: v
4 Old modul P P
S module instances
- % Module:oldTaskModule
-1 © taskProcess : FINISHED
» Expression Evaluator Page 1 of 1, totalitems: 1
Connection: LSPS Embedded Server {admin) |

Figure 6.10 Log view with the post-process log message

(f) Select the model instance and click Resume ([#) button. The model instance becomes Running.

8. Go to the Application User Interface as the guest user. The to-do list of the guest user still contains the locked
to-do in spite of the fact that the new model allows only the admin user as the to-do performer. However, its
content already follows the form of the new model.

Set the transformation strategy on the User Task of your muc file to Restart. Leave the strategy on the parent
process and module set to Continue and perform the model update anew. The to-do will be discarded.

Note: If you set the strategy on the parent process and module to Restart, the entire process/module
will be discarded on update and a new process/module will be instantiated.

6.1.3 Updating an Event Type

Required action: Update a model instance so that its None Start Event is changed to a Conditional Start Event and
Timer Intermediate Event changes in a Conditional Intermediate Event.

A change of an event type does not allow to define any pre- or post-processing on the event, or a transformation
expression since the change is detected as a removal of the old event and addition of the new event. If required,
define model-update processes on the parent modules and process.

1. Design the old model with a process definition:

(a) Create a module with the old process.

78 Model-Update Tutorials

(b) Create a process definition with a None Start Event, a Conditional Flow Event, and a Simple End Event.

(c) Set the Delay parameter of the Timer Intermediate Event, for example, to new Duration (years
-> 1).

Design the new model: copy and paste the old module, change the None Start Event to a Conditional Start

Event and the Timer Intermediate Event to Conditional Intermediate Event, and set their condition, for exam-
ple, to false.

3. Create the .muc file:

(a) Right-click the parent project, go to New > Model Update Configuration and follow the wizard.

(b) Open the .muc file and on the Process page and check the element mapping.

The change mapping might be incorrect as shown in Model Update Configuration with Incorrect Map-

ping: The newUpdateEventType Process is recognized as a new Process, while we want it to be
mapped to the o1dUpdateEvent Type Process.

| oldProcess.gobpmn <] newProcess.gobpmn 1t updateEventType.muc 22
Processes

Baseline Modification Transformation / Strategy Pre=prc

-/ % newUpdateEventType

newlpdateEventType//1.0//newProc Added resource 'newUpdateEvent

Change Source of Mapping
-/ % oldUpdateEventType k

- &] oldUpdateEventType//1.0//oldProces: = Removed resource 'oldUpdateEw

@)
O
@)

Create Post-process

== Removed none start event "

== Removed timer intermediate eve

= Removed simple end event "

Figure 6.11 Model Update Configuration with Incorrect Mapping

(c) Rigth-click the element and adjust the mapping if needed.

6.1 Model Update Examples 79

1% updateEventType.muc &
Processes

Baseline Modification Transformation / Strategy F

-| ® newUpdateEventType

8 B oldUpdateEventType//1.0//oldProces: Continue

@ =k Added conditional intermediate eve

=4 Added conditional start event "

O == Removed none start event "

@ == Removed timer intermediate event
" oldUpdateEventType

Figure 6.12 Model Update Configuration with Corrected Mapping

The transformation strategies on the Process is set to Continue. This is the default transformation
strategy. If we used the Restart strategy, the process would be restarted on update if on the element at
the given moment.

To perform the model update, do the following:

1. Make sure your server with the Execution Engine, possibly on the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

2. Upload the model to the server and create a model instance of the old model: In the GO-BPMN Explorer,
right-click the old module and go to Run As > Model.

3. Upload the new model to the server: In the GO-BPMN Explorer right-click the new module and go to Upload
As > Model.

4. Switch to the Management perspective.

5. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

6. Switch to the Management perspective.

7. Refresh the Module Management and Model Instances view and check that the old model is instantiated and
the new model uploaded.

8. Inthe Model Instances view, open the detail of your old model and check the execution diagram of the process.

O

Figure 6.13 Execution Diagram of the Old Model Instance

80 Model-Update Tutorials

9. Perform the update:

(a) Inthe Model Instances view, click the Model Update (€2) button.

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, do not apply any filtering, just click Next so that any available instances of the
old model are updated (in this case, exactly one model instance is running).

(d) Check the summary of the model update and click Finish.

(e) Refresh the Model Instances view: The model instance should be in the Updated status.

(f) Click the Continue ('%') button to trigger the execution of the updated model instance.

10. Check the execution diagram of the updated model instance.

Figure 6.14 Execution Diagram of the Updated Model Instance

Note that the execution remains on the new Conditional Event.

Now set the transformation strategies on the process to Restart so the Process is restarted on update if on the
event. Perform model update as described above: The execution remains on the new Conditional Start Event since
the process instance was restarted.

6.1.4 Updating a Data Type

Required action: Update a model instance with a changed data type of a record property.

Important: It is not recommended to update shared records via model update since changes on shared
records are reflected on the database. While it is safe to add a new field to a shared record and remove
not-nullable fields using model update, modifications to fields, such as modification of their data types,
might result in corrupted database schema or data loss. It is recommended to migrate the database
directly, not via update of shared records.

When you are updating a model instance to a model with changed non-shared record types, all record instances
will be updated according to the transformation expression.

We will update a model instance's data hierarchy as follows:

6.1 Model Update Examples 81

Book Book

title : String title : String
isbn : ISBN isbn : String
keyword @ 5tring keywords : List<String=>

ISBN

ean : Integer

group : Integer
publisher : Integer
title : Integer
checkDigit : Integer

Figure 6.15 Old and new data type models

The data type update will involve the following changes:

» The ISBN record is removed: No further actions are required.

» The Book.isbn field is changed from the ISBN type to String: The new isbn field must concatenate and format
the old instance of ISBN for the given Book instance.

« The keyword field is changed from a string to a list of strings and renamed to keywords: The new keywords
field should import the old keyword string.

1. Design the old model with a process definition, variable definition, and data type definition as shown in Old
model for data type update:

(a) Create a module with the old data type hierarchy with the Book and I SBN records.

(b) Create a global variable definition with a bookSet variable of type Set <Book> and a book variable of
type Book.

(c) Create a process definition with a None Start Event, a Conditional Flow Event, and a Simple End Event.

(d) On the flow from the None Start Event define an assignment expression that creates three Book in-
stances assigned to the bookSet global variable:

bookSet := {

new Book (title —-> "Brave New World",
isbn -> new ISBN(ean -> 978, group -> 1, publisher -> 85399, title -> 393, che
keyword -> "science fiction"),

82 Model-Update Tutorials

new Book (title —-> "Catch-22",
isbn -> new ISBN(ean -> 978, group -> 1, publisher -> 4055, title —-> 387, chec
keyword -> "army"),
book := new Book(title —-> "Brave New World",
isbn -> new ISBN(ean -> 978, group -> 1, publisher -> 85399, title —->
keyword —-> "science fiction")

}

(e) Set the Condition parameter on the Conditional Flow Event to false. The Conditional Flow Event will
hold the execution so that the process creates the record instances and then remains running.

%. GO-BPMN Explorer 8 1% 5 B ¥ = 3 [addingBook.gobpmn &
=) i% DataTypeUpdate ¢ & & ol & W @ @ |100% v |] a L s
+ B Exchange Client € addingBook *
+ B Sharepoint Client

+ = Standard Library

)
- % oldDataTypeModel 1.0 O =

£ 3 Module Imports

=/ lc] addingBook.gobpmn

= € addingBook (BPMN-based)

The Condition parameter is setto false
I Main 50 thatthe process remain running.

=/ [dataTypeModel.datatypes
- [H Data Types

T Main P -
2 B = B
+] D Book
= OiseN
= lo dataTypeModel.vars E Properties 52 | 7l Problems @] Error Log 4" Search & Console
o bookSet: Set<Book> /" Normal flow [,]
© book : Book *-
ook oo Detail
bookSet := {
Meonitoring new Book (
N title -> "Brave New World",
Assignments isbn -> new ISBN(
Metadata san -> 978,
group -= 1,
Appearance publisher -> 85399,
title -= 303,
checkbigit -> 0),
keyword -= "science fiction"),
new Book(
. title -> "Catch-22",
oZ Outline = isbn -> new ISBN(
ean -> 978,
group -= 1,

publisher -> 4055,
title -= 387,
checkbigit -> 7),
keyword -> "army"),
book := new Book(
title -> "Brave New World",

Figure 6.16 Old model

2. Design the new model: copy and paste the old model, modify the data type model, and remove the assign-
ment expression on the flow.

3. Create the .muc file:

(a) Right-click the parent project, go to New > Model Update Configuration and follow the wizard.

(b) Open the .muc file and on the Data Types page and define the transformation expressions for the isbn
record field and the new keywords field:

* isbn:
toString (old("isbn.ean")) + "-" +
old("isbn.group") + "-" +
old("isbn.publisher") + "-" +
old("isbn.title") + om_w 4
old ("isbn.checkDigit™")

This expression will take individual fields from the old record and concatenate them into a new
hyphenated isbn value.

6.1 Model Update Examples 83

» keywords: [o1d ("keyword")] This expression will take the keyword string and add it to a new
list of keywords.

1t DataTypeUpdate.muc &

Data Types

Baseline Modification Transformation

& " newDataTypeModel

- I oldDataTypeModel//1.0//dataTypeMo
- HBook- 3 changes

toString(old("isbn.ean")) + "-" +
old("isbn.group") + "-" +

+ =isbn : String - 1 change old("isbn.publisher”) + "= +
old("isbn.title") +"-"+
old("isbn.che ckDigit")

= keywords : List<String> 4k Added field 'keywords : List<String: [old("keyword")]
= keyword : String = Removed field 'keyword : String’
Hisem = Removed record 'ISBN’

% oldDataTypeModel

Baseline Value Modified Value

El Overview | [0 Data Types | [Variables|] Processes

Figure 6.17 Model Update Configuration with the Data Type Changes

To perform the model update, do the following:

4. Make sure your server with the Execution Engine, possibly on the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

5. Upload the model to the server and create a model instance of the old model: In the GO-BPMN Explorer,
right-click the old module and go to Run As > Model.

6. Upload the new model to the server: In the GO-BPMN Explorer right-click the new module and go to Upload
As > Model.

7. Switch to the Management perspective.

8. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

9. Inthe Model Instances view, open the detail of your old model and check the execution diagram of the process.

84 Model-Update Tutorials

-1 Model Instances 2% Model Instance #39000 2

m?
~

m i LI
~ General Attributes

D: 39000 Initiated: | 2014-06-20 10:43:32 Status: Running

Model: oldDataTypeModel - 1.0 (2014-06-20 10:43:27)

~ Model Instance Explorer

= 4 Properties
= 4 Module Instances
SE. Module:oldDataTypeModel
9 book: oldDataTypeModel::Book(title->Brave New World, isbn->oldDataTypeModel::ISBN, keyword->science fiction)
9 bookSet: {oldDataTypeModel::Book(title->Brave New World, isbn->oldDataTypeModel::ISBN, keyword->science fiction), oldDataTypeModel::Boolk(title->Cz
= € addingBook : RUNNING

4 Signal Queue

b Expression Evaluator

Figure 6.18 Detail of the Old Model with Old Global Variables

10. Perform the update:

(a) Inthe Model Instances view, click the Model Update (€) button.

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, do not apply any filtering, just click Next so that any available instances of the
old model are updated (in this case, exactly one model instance is running).

(d) Check the summary of the model update and click Finish.
(e) Refresh the Model Instances view: The model instance should be in the Updated status.
(f) Select the model instance and click Resume ([l). The model instance becomes Running.

11. Check the Log view for the log message of the post-process.

2} Model Instances 7 Model Instance #39000 X 8 7| @ ® % | $ = 0
~ General Attributes
ID: 39000 Initiated: 2014-06-20 10:43:32 Status: Updated
Model: newDataTypeModel - 1.0 (2014-06-20 12:47:47)
~ Model Instance Explorer
+ 4 Properties
= 4 Module Instances
-/ % Module:newDataTypeMadel
= book: newDataTypeModel:Book(title->Brave New World, isbn->978-1-85392-393-0, keywords->List<String>)
o bookSet: {newDataTypeModel::Bock(title->Brave New World, isbn->978-1-85399-393-0, keywords->List<String>), newDa
€ addingBook : SUSPENDED
% Signal Queue

% 4 Model Update History

» Expression Evaluator

Figure 6.19 Detail View of the Updated Model Instance with New Global Variables

6.1 Model Update Examples 85

The variables hold values of the new data types: the record values were transformed according to the transformation
expression defined for the data types.

86

Model-Update Tutorials

Chapter 7

Deploy LSPS Application on a Local Server

In this tutorial, you set up a MySQL database with LSPS tables, set up the WildFly server, deploy the LSPS Appli-
cation to the WildFly server, and connect to the server from PDS. We assume you are on Linux.

Important: This environment is not intended for production. For simplicity, resources are set up in the
home directory and no security aspects are taken into consideration. More detailed deploy instructions
are available in the Deployment Guide.

You will need the following:

71

MySQL (version 5.7.23)
JDBC driver for MySQL
WildFly (WildFly 11)

Isps-runtime (requires licensed)

Setting up Local MySQL Database

. Install MySQL: make sure to perform this as the administrator on Windows.

Log in as root user:

mysgl —-u root -p
Create LSPS database and user:

CREATE USER ’1lsps’@localhost;
CREATE DATABASE lsps DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_general_ci;

GRANT ALL PRIVILEGES ON lsps.x TO lsps@’’ IDENTIFIED BY ’1lsps’;
FLUSH PRIVILEGES;

. Inthe [mysgld] section of the mysqld.conf file, add max_allowed_packet=512M. On Windows, de-

fine this in your C:\ProgramData\MySQL\MySQL Server 5.7\my.ini in the mysql installation
directory.

$ grep max_allowed /etc/mysql/mysqgl.conf.d/mysqgld.cnf
max_allowed_packet = 512M

../server-deployment/index.html

88 Deploy LSPS Application on a Local Server

5. Initialize the database with the migrate. sh script from 1sps—-runtime/db-migration.
./migrate.sh databaseUrl:jdbc:mysgl://localhost/lsps user:lsps password:lsps
Initialized Database

mysgl> USE lsps;
Database changed
mysqgl> SHOW TABLES;

| LSPS_ACTIVE_USERS_TRACK |
| LSPS_BINARY DATA |
| LSPS_BINARY DATA_ METADATAS |
| LSPS_DASHBOARD_TABS |

7.2 Setting up Local WildFly

1. Download WildFly and extract to your home.

~$ unzip Downloads/wildfly-11.0.0.Final.zip
~$ mv wildfly-11.0.0.Final/ wildfly

2. Setup JAVA_HOME and add JAVA_HOME/bin to PATH.

export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export PATH=$JAVA_HOME/bin:S$PATH

3. Set up data source for the MySQL database:

(a) Add JDBC driver:

~$ cd Downloads
~/Downloads/$ unzip mysgl-connector—-java-5.1.46.zip
~$ cd ..; mkdir -p wildfly/modules/com/mysqgl/main
~$ cp Downloads/mysgl-connector—java-5.1.46/mysgl-connector—java-5.1.46-bin.jar wildfly/u

(b) Configure the driver in wildfly/modules/com/mysql/main/module.xml.

~$ cat wildfly/modules/com/mysqgl/main/module.xml
<module xmlns="urn:jboss:module:1.0" name="com.mysgl">
<resources>
<resource-root path="mysgl-connector-java.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

(c) Add the authentication jar:

~$ mkdir -p wildfly/modules/com/whitestein/lsps/security/main
~$ cp ~/Downloads/lsps-runtime/lsps—-security-jboss-3.2.jar wildfly/modules/com/whitestein

(d) Configure the authentication module:

7.2 Setting up Local WildFly 89

cat wildfly/modules/com/whitestein/lsps/security/main/module.xml
<module xmlns="urn: jboss:module:1.0" name="com.whitestein.lsps.security">
<resources>
<resource-root path="lsps-security-jboss.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
<module name="org.picketbox" />
</dependencies>
</module>

4. Create the admin user for WildFly:
~$./wildfly/bin/add-user.sh -u admin -p admin

5. Set up profile configuration in wildfly/standalone/configuration/standalone-full.«
xml:

» Add LSPS_DS transaction datasource that connects to your Isps database:

<datasources>
<!-— ADDED: —-->
<xa-datasource jndi-name="java:/jdbc/LSPS_DS" pool-name="LSPS_DS" enabled="true" use-java
<xa-datasource-property name="URL">
jdbc:mysqgl://localhost:3306/1sps
</xa-datasource-property>
<driver>mysqglxa</driver>
<transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
<xa-pool>
<min-pool-size>10</min-pool-size>
<max-pool-size>20</max-pool-size>
<prefill>true</prefill>
</xa-pool>
<security>
<user—-name>lsps</user-name>
<password>1lsps</password>
</security>
</xa-datasource>

« Add driver connection:

<drivers>
<driver name="h2" module="com.h2database.h2">
<xa-datasource-class>org.h2. jdbcx.JdbcDataSource</xa-datasource-class>
</driver>
<!-— ADDED: --_>
<driver name="mysglxa" module="com.mysqgl">

<xa-datasource-class>com.mysql.cj. jdbc. jdbc2.optional .MysglXADataSource</xa-datasour
</driver>

+ Add the security realm to the security subsystem:

<subsystem xmlns="urn:jboss:domain:security:2.0">
<security-domains>
<security-domain name="lspsRealm" cache-type="default">
<authentication>
<login-module code="com.whitestein.lsps.security.jboss.LSPSRealm" flag="
<module-option name="dsJndiName" value="/7jdbc/LSPS_DS"/>
</login-module>
</authentication>
</security-domain>

» Prolong the locking isolation on the web cache container:

<cache-container name="web" default-cache="passivation" module="org.wildfly.clustering.w
<local-cache name="passivation">
<locking isolation="REPEATABLE_READ" acquire-timeout="600000"/>

90 Deploy LSPS Application on a Local Server

» Add mail session LSPS_MAIL:

<mail-session name="lspsmail" jndi-name="java:jboss/mail/LSPS_MAIL">
<smtp-server outbound-socket-binding-ref="mail-smtp"/>
</mail-session>

» Configure JMS:
— Enable persistence onjms <subsystem xmlns="urn: jboss:domain:messaging-activemg«
:2.0">:
<server name="default" persistence-enabled="true">
— Add queue and topic:

<jms-queue name="LSPS_QUEUE" entries="java:jboss/jms/LSPS_QUEUE"/>
<jms-topic name="LSPS_TOPIC" entries="java:jboss/jms/LSPS_TOPIC"/>

6. Adjust JAVA OPTS:

» On Linux, in wildfly/bin/standalone.conf.:

~$ cat wildfly/bin/standalone.conf
if ["x$JBOSS_MODULES_SYSTEM_PKGS" = "x"]; then
JBOSS_MODULES_SYSTEM_PKGS="org. jboss.byteman"

fi

if ["x$JAVA_OPTS" = "x"]; then
JAVA_OPTS="-Xms64m -Xmx800M -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=256m -Djava.ne
JAVA_OPTS="$JAVA_OPTS -Djboss.server.default.config=standalone-full.xml"
JAVA_OPTS="$JAVA_OPTS -Dorg.eclipse.emf.ecore.EPackage.Registry.INSTANCE=org.eclipse.
JAVA_OPTS="$JAVA_OPTS -Dorg.apache.el.parser.COERCE_TO_ZERO=false"
JAVA_OPTS="$JAVA_OPTS -Dcom.whitestein.lsps.vaadin.ui.debug=true"

else

echo "JAVA_OPTS already set in environment; overriding default settings with values: $
fi

» On Windows, add at the end of wildfly/bin/standalone.conf.bat:

set "JAVA_OPTS=-Xms64m —-Xmx800M -XX:MetaspaceSize=96M —-XX:MaxMetaspaceSize=256m —-Djava.n
rem # ADD THE FOLLOWING:
set "JAVA_OPTS=%JAVA_OPTS% -Djboss.server.default.config=standalone-full.xml"
set "JAVA_OPTS=%JAVA_OPTS% -Dorg.eclipse.emf.ecore.EPackage.Registry.INSTANCE=org.eclipse
set "JAVA_OPTS=%JAVA_OPTS% -Dorg.apache.el.parser.COERCE_TO_ZERO=false"

7. Deploy the ear with LSPS Application: here we deploy the default ear from Isps-runtime.
cp ~/Downloads/lsps—runtime/lsps—application-3.2.ear ~/wildfly/standalone/deployments/
8. Start the server:

~/wildfly/bin$./standalone.sh

7.3 Connecting to Local WildFly from PDS

To connect your PDS to the server, do the following:

1. In the Modeling perspective of PDS, go to Server Connection > Server Connection Settings
2. In the dialog, click Add.

3. Enter the connection properties and test the connection.

7.3 Connecting to Local WildFly from PDS 91

type Filter text | Server Connections - - -
G l . s p—
enera Add, remove or edit conne,
» Ant
» Data Management Name . |
» Hel . Server details
°r *SLSPS Embedded Soy Edit details of a remote server |
» Install/Update sps_local_mysql
¥ Java |
» Plug-in Development Server name Isps_local_mysql
~ Process Design Suite
Expression Template: Server URL http://localhost:8080/lsps-ws
rG
s User admin
~Management
Appearance Password seees
Server Connections
» Modeling Application URL | http://localhost:8080/Isps-application
» Run/Debug Default Database Schema Update Strategy
» Team © Do nothing with database schema
(") update the schema by model
() validate schema first
(") Drop/create schema
Test Connection
® Cancel Finish
@ " cancel || OK |

4. Make sure the connection is selected in the Server Connections.

5. In the status bar, check that the connection is active.

/L
& Annotations ©

& outline & mEBk® =0 L 7 73
Tree| Overview @ & e
~@ proc (Goal-based)
9 Main
©Goal1 Workspace Log
~Ddfa i -

[e) Message Plug-in Date -

o

[Properties (21 Problems | @) Error Log 2 FER-IRS % X » v =g

I Connection: Isps_local_mysql (admin) I %@ | P LSPSNews

Now you can use the management perspective to "communicate" with the LSPS Application on your
server.

../management/managementperspective.html

92

Deploy LSPS Application on a Local Server

	1 Main Page
	2 Forms Tutorials
	2.1 Chart
	2.1.1 Creating a Donut Chart
	2.1.2 Creating a Bar Chart
	2.1.2.1 Setting Category as X Axis Values

	2.1.3 Creating an Area Chart
	2.1.3.1 Creating an Area Chart with Time X Axis

	2.1.4 Creating a Line Chart

	2.2 Validating a Record from a Form
	2.2.1 Log Confirmation of Order

	2.3 CRUD Grid
	2.3.1 Creating Database Data
	2.3.2 Creating the Form
	2.3.3 Adjusting Presentation
	2.3.4 Creating the Document

	2.4 Validation of Multiple Components
	2.5 Editing Grid Data in a Popup
	2.5.1 Creating the Public Popup
	2.5.2 Using the Public Popup

	2.6 Filter over Grid and Table with a Custom Data Source
	2.6.1 Creating a Custom Data Source
	2.6.2 Creating the Form

	3 UI Forms Tutorials
	3.1 Editable Table
	3.2 Table with Derived Values
	3.3 Calendar with Adding Entries Functionality
	3.4 Pop-up with Save and Cancel Buttons

	4 Process Tutorials
	4.1 Agile Processes
	4.1.1 Designing the Skeleton
	4.1.2 Designing Omitting
	4.1.2.1 Real-World Adaptations

	4.1.3 Designing Deactivation
	4.1.4 Designing Activation
	4.1.4.1 Real-World Adaptations

	4.2 Creating a Model Instance from Document and Navigating to its To-Do on Submit

	5 Data Model Tutorials
	5.1 Creating Custom To-Do List
	5.1.1 Creating the Data Model
	5.1.2 Creating the Todo Items
	5.1.2.1 Creating the Form for the To-Do

	5.1.3 Creating a List of Todo Items
	5.1.4 Adding the Custom To-Do List to the Navigation Menu
	5.1.5 Localizing Name of the Menu Item
	5.1.6 Excluding the Todo Items Document from Documents

	5.2 Validating a Related Record

	6 Model-Update Tutorials
	6.1 Model Update Examples
	6.1.1 Updating a Variable Value
	6.1.2 Updating a Task Parameter
	6.1.3 Updating an Event Type
	6.1.4 Updating a Data Type

	7 Deploy LSPS Application on a Local Server
	7.1 Setting up Local MySQL Database
	7.2 Setting up Local WildFly
	7.3 Connecting to Local WildFly from PDS

