
Living Systems® Process Suite

Experimental Todo and Document Forms

Living Systems Process Suite Documentation

3.2
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.



Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.



Contents

1 Main Page 1

2 Quickstart 3

2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Using the Form in a Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Using the Form in a User Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Form Definition 15

3.1 Creating a Form Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Renaming a Form Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Previewing a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Form Design 21

4.1 Defining a Parametric Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Defining a Local Form Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Creating a Form Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Inserting a Parent Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Deleting a Parent Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Searching for Form Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 Displaying Form Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Enabling Error Reporting on Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 Troubleshooting a Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



iv CONTENTS

5 Actions on Forms 29

5.1 Executing Logic Before and After Form Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Detecting Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Checking the Size of the Browser Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Creating Transient Data in Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Saving a Document or Todo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Submitting a To-Do or Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 Navigating from a To-Do or Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Mobile Forms 33

7 Form Components 35

7.1 Binding of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1.1 Setting Component Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.1.2 Getting Component Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.3 Clearing Component Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.4 Implementing Custom Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.5 Defining an Initial Value of a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Validation of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2.1 Adding a Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2.2 Validating Record Constraints in Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2.3 Checking Component Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2.4 Setting a Custom Error Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2.5 Getting All Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3 Actions on Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3.1 Refreshing a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3.2 Setting the Visibility of a Form Component . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3.3 Setting the Caption of a Form Component . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.4 Adding an Icon to Form Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.5 Setting a Component as Read-Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.6 Setting Component Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3.6.1 Default Component Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3.6.2 Setting Absolute Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3.6.3 Wrapping Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3.6.4 Filling Parent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.6.5 Setting Expand Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.6.6 Setting Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.7 Add Style Name to a Form Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.8 Disabling a Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3.9 Setting a Tooltip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3.10 Displaying a Notification Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3.11 Defining a Context Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3.12 Handling a Right-Click Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3.13 Defining a Value Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



CONTENTS v

8 Reference 51

8.1 Container Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.1 Common Properties and Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1.1.1 Setting Spacing and Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.1.2 Populating Container Components . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.2 Container Component Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.2.1 Layout Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.2.2 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 Input Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2.1 Common Properties and Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2.2 Input Components Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2.2.1 Text Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2.2.2 Decimal Field (forms::DecimalField) . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.2.3 Date Field (forms::DateField) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2.2.4 Check Box (forms::CheckBox) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.2.5 Select Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.2.6 Tree (forms::Tree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2.2.7 Upload (forms::Upload) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2.2.8 Slider (forms::Slider) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3 Output Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.1 Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.2 Tabular Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.2.1 Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.2.2 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3.2.3 Tree Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3.3 Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3.3.1 Generic Chart Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3.3.2 Pie Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.3.3 Cartesian Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3.3.4 Gauge Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



vi CONTENTS

8.3.3.5 Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3.4 Other Output Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.4.1 Repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.4.2 Browser Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3.4.3 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.4.4 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.4.5 Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.4.6 Map Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.4.7 PDF Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4 Action Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4.1 Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4.2 Action Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4.3 Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4.3.1 Opening a Link Resource in a New Window or Tab . . . . . . . . . . . . . . . . 136

8.5 Special Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.5.1 Expression Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.5.1.1 Creating a Form Component Programmatically . . . . . . . . . . . . . . . . . . 137

8.5.1.2 Inserting Form into a Form Component Dynamically . . . . . . . . . . . . . . . 137

8.5.2 Reusable Form Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9 Form Migration 139

9.1 Changes in Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Chapter 1

Main Page

A form defines the content that is displayed in the front-end application, the Application User Interface, when the
user opens either a to-do or a document

It serves to obtain and process information, which is used by the application or model instances: The user opens
a to-do or document, fills out the form, submits it, and the execution of the underlying entity, that is, user task or
document model instance, continues.

This guide documents the Forms::forms implementation of forms.

Important: The forms implementation is considered experimental and its API might change in future
releases. To create fully supported forms, design forms implemented by the ui module
of the Standard Library: Make sure to check the differences between forms and ui before-
hand.

../management/index.html#todos
../pds/Documents.html
../ui-vaadin/index.html
../ui-vaadin/index.html


2 Main Page



Chapter 2

Quickstart

We will create a Document, and a Process that will display your form. From the form, we will create a new shared
Record instance.

2.1 Prerequisites

Before you can start working with form definitions, you will need to:

1. Run PDS.

2. Open the Modeling perspective.

3. Create a GO-BPMN project with a GO-BPMN module.

4. Create the data module with a Data Type definition: insert a shared Record with at least one Field into the
definition.



4 Quickstart

Figure 2.1 Shared Record

5. Create the quickstart module and import the data module into it.

6. Remove the ui module from module imports.

2.2 Form

Important: Before you create your form, make sure you have removed the ui module import from
your module. Having both, the ui module and the forms module, imported in a module could cause
exceptions on forms in runtime.

To create the form, do the following:

1. Import the forms Module into your Module:

(a) In the GO-BOMN Explorer, expand the Module and double-click its Module Imports node.

(b) On the Imports tab of the Properties dialog, click Add.

(c) In the Add New Import dialog, double-click the Standard Library > forms Module.

2. Create a Form Definition:

(a) Right-click your Module > New > Form Definition



2.2 Form 5

(b) Enter the Form name and select Use FormComponent-based UI

Figure 2.2 Creating a form definition

(c) Click Finish.

3. In the Form editor, create a Grid that will display a list of users in a tabular manner:

(a) Right-click the canvas, go to Insert Component > Container Components > Vertical Layout.

(b) Right-click the Vertical Layout, go to Insert Component > Output Components > Grid.

(c) Open the Properties view of the Grid and define the following:

• ID unique within the Form

• data source as Type and insert the name of the shared Record so the table will use as its data
source a list of all shared Records of the type.

(d) Create a Grid Column with the user name:

i. In the palette, click Grid Column and then click into the Grid.

ii. In the Column's Property view, under Value Provider select Property path and enter the property
path to the name below.



6 Quickstart

Figure 2.3 Column with record field

(e) Create another Grid Column with the date of birth:

i. Insert another Grid Column into the Grid.

ii. Set Value Provider to Property path with the value User.dob.

iii. Set Renderer to Date.

4. Create a popup for entering new user data:

(a) Insert the Popup component from the Container Components palette section below the Grid.

(b) Define its ID and Method signature for its factory call.

We will call the method as a button action to create and display the popup.



2.2 Form 7

Figure 2.4 Popup

(c) Create a local variable that will hold the data of the new user on the popup from the Outline view and
set its initial value to a proxy of the User record: the proxy is a copy of a record instance with a link to
its record. In this case, the user record does not exist yet. The aim of our proxy is to allow us to discard
the user data without having to clean up any transient data.

(d) Insert a Vertical Layout into the Popup: select the Margin and Spacing options in its properties.

(e) Insert a Form Layout into the Vertical Layout.

(f) Insert a Text Field into the Form Layout with its binding set to Reference and its value to the name
property of the user variable.



8 Quickstart

Figure 2.5 Text field with user name Binding

(g) Insert a Date Field into the Form Layout with its binding set to Reference and its value to the Date
property of the User object.

(h) Insert the Create button and define the create logic as its click action:

• The Proxy newUser object merges: a "proper" User object is created.

• The table refreshes so that the new user appears in the table.

• The Popup closes.

{ click ->
mergeProxies(false, newUser);
userGrid.refresh();
userDetailsPopup.hide();

}

5. Create a button that will open the popup:

(a) Insert a Button component under the Grid.

(b) Define its Click Listener expression to open a popup: openUserDetails().show()

6. Finally, we want to add the option to submit the form on button click: add a Button to the form and call the
static Forms.submit() method as its click listener.



2.3 Using the Form in a Document 9

As we will demonstrate next, a Form can be created by a User Task or a Document:

• When created by a User Task, on submit the execution of the User Task finishes and the process execution
continues.

• When created by a Documents, the system navigates away: under the hood, the server creates a model
instance whenever you open a document and finishes the instance when you submit the form.

2.3 Using the Form in a Document

To create a Document with your Form, do the following:

1. Create a document definition:

(a) Right-click your Module > New > Document Definition; enter name and click Finish

(b) In the document definition, click Add.

(c) Define the document properties and its UI definition.



10 Quickstart

Figure 2.6 Document definition that will display our Form as its content

2. Open the document:

(a) Make sure you are connected to an LSPS server or run the LSPS Embedded Server: go to Server
Connections > LSPS Embedded Server > Start.

(b) In GO-BPMN Explorer, right-click your Module, go to Upload As > Model.

(c) Open a browser and go to your application URL (for the Embedded Server by default http←↩

://localhost:8080/lsps-application/ui)

(d) After you log in, go to Documents and click the document.

Figure 2.7 Opening Document

(e) Create new users in the document.

(f) When finished, click Submit.

http://localhost:8080/lsps-application/ui
http://localhost:8080/lsps-application/ui


2.4 Using the Form in a User Task 11

Figure 2.8 Submitting a filled-in document

2.4 Using the Form in a User Task

Create a Process with a User Task with your Form:

1. Create a process definition: right-click your Module > New > Process Definition; enter name and click
Finish

2. In the process editor, right-click the canvas and go to New > Task.

3. In the Select Task Type dialog, select User from the human module.

4. On the Parameters tab in its Properties view, define the Task properties with its UI definition set to create an
instance of the form.



12 Quickstart

Figure 2.9 User task that will display your Form

To check the document and process and display the form, do the following:

5. Make sure you are connected to an LSPS server or run the LSPS Embedded Server (go to Server Connec-
tions > LSPS Embedded Server > Start).

6. In GO-BPMN Explorer, right-click your Module, go to Run As > Model.

7. Open a browser and go to your application URL (for the Embedded Server by default http←↩

://localhost:8080/lsps-application/ui)

8. After you log in, go to the To-Do List and open the to-do.

Figure 2.10 Opening To-Do

9. Create new users in the document.

http://localhost:8080/lsps-application/ui
http://localhost:8080/lsps-application/ui


2.4 Using the Form in a User Task 13

10. When finished, click Submit.



14 Quickstart



Chapter 3

Form Definition

A form definition holds one form with its constructors, members (local variables and methods), and the component
tree. The component tree is a tree of form components, such as, layout components, input components, output
components, etc.

Important: Chart components are based on Vaadin Charts developed by a third party. Make
sure to obtain the Vaadin Chart licenses before you use them. The users of your application and
Management Console, do not require any additional licenses.

3.1 Creating a Form Definition

To create a form definition file, do the following:

1. Make sure you have created a project and module.

2. Remove the ui module from module imports of your module and import the forms module.

Important: Having both, the ui module and the forms module, imported in your module could
cause exceptions on your forms in runtime.

3. In the GO-BPMN Explorer view, right-click the module.

4. In the displayed context menu, go to New Form Definition.

https://vaadin.com/elements/browse#charts


16 Form Definition

Figure 3.1 Creating a form definition

5. In the New Form Definition dialog, enter the form name and make sure the Use FormComponent-based UI.



3.2 Renaming a Form Definition 17

Figure 3.2 Flagging a form definition to create a form based on the forms module

3.2 Renaming a Form Definition

To rename a form definition and its form, right-click the Form root node in the Outline view or the file in the GO-BPMN
Explorer and click Rename in the context menu.

Note that this will rename all the references to the Form root, the form definition file, the methods file.



18 Form Definition

Figure 3.3 Renaming Form

Alternative, rename the form definition file.

3.3 Previewing a Form

To display preview of your form in your web browser, do the following:

1. In the GO-BPMN Explorer, right-click the form.

2. Select Run As -> Form Preview.

A form-preview configuration is created for the preview if it doesn't exist yet. Modify the preview configuration if you
need to send input parameters to the form.



3.3 Previewing a Form 19

Figure 3.4 The form preview called with the argument Hello

When you request a form preview, the LSPS Server to which your PDS is connected, runs a persisted instance of
the module with the form: it initializes global variables and form parameters, and creates the form context. Then
your system browser with the form preview opens.

To delete the model instances created by form preview, open the Model Instances view of the Management per-
spective, right-click anywhere into the view and click Remove All Form Preview Model Instances.

Important: Make sure to disable this feature in production environments.

../custom-application/buildinganddeploying.html#disablingformpreview


20 Form Definition



Chapter 4

Form Design

A form is designed in the forms definition using the Forms editor. It comprises constructors, methods, local variable
and a tree of form components, such as, input fields, radio lists, etc. To design the component tree, you insert the
required form components into a canvas and define the properties of components in the Properties view.

Figure 4.1 A forms::form definition with a Form

The form is instantiated by a User Task or a Document based on its UI Definition property. The property holds the
constructor call that the task or document use to create their form. The constructor calls the createWidget()
method, which does the following:



22 Form Design

1. It calls the preCreateWidget() method as defined by the user is executed.

2. It creates the root component of the form tree, FormWidget.

3. It constructs the tree of form components as defined in the form definition.

4. It calls the Init expressions defined on the components of the tree.

5. It calls the postCreateWidget() method as defined by the user is executed.

Then form is then rendered.

The constructor call can be parametric so you can send input to your form when it is instantiated.

The FormWidget component cannot be changed; however, you can access it with the getWidget() method.

When the user interacts with the form, components of the tree produce event objects. These events trigger listener
expressions: When an event occurs, its listener expression is performed; for example, when the user clicks a button,
a ClickEvent is produced, and the Click Listener expression of the button is executed; when the user inserts a value,
a ValueChangeEvent is produced, and the expression defined as the OnChangeEventListener of the component is
executed.

The component tree can grow as the user works with the form since components can be added to the tree dy-
namically; for example, a new popup can be created every time the user clicks a button. To prevent storing of
unnecessarily large trees, the server calls the garbage collector over the form: The collector prunes the component
tree branches that are not referenced. The collector is called when the form is submitted or saved.

Important: The example forms in this guide often work with data stored in variables. In production,
such solutions are not intended for storage of extensive data amount and might result in out-of-memory
errors. When acquiring data for forms use queries whenever the data is persisted in a database.

4.1 Defining a Parametric Constructor

To define a constructor for your Form, open the methods file of your Form and define the constructor as a new
constructor method.

An example parametric constructor: The initialDate variable is defined as the form's local variable.

DateField {

public DateField(Date date) {
initialDate := date;

}
}



4.2 Defining a Local Form Variable 23

Figure 4.2 Calling a parametric form constructor from a document

4.2 Defining a Local Form Variable

To define a local form variable, do the following:

1. Make sure you have the form resource opened in the Form editor.

2. In the Outline view, right-click the form and go to New > Variable.

3. In the displayed Properties view, define the variable properties.

4. In the methods file of your Form, define the constructor that will initialize the value of the variables if applicable.



24 Form Design

Figure 4.3 Parameterized form constructor that sets a local variable value

4.3 Creating a Form Hierarchy

Important: Note that since both, the ui and forms implementations, can be used to return a UIDefinition
to a Document or To-do; sometimes it can be unclear on runtime which implementation is used; typically
if you use an expression that returns human::UIDefinition. The LSPS Server might not be
able to detect which implementation you are using and return an exception. Therefore make sure to
remove either the ui or the forms module form your module imports so the used implementation can be
recognized correctly based on the imported module.

To create the component hierarchy in your form definition, do the following:

1. Open the form definition file (double-click it in the GO-BPMN Explorer).

2. Click the required component in the palette and then click to the respective position on the canvas. Alterna-
tively right-click the position in the canvas, go to Insert Component and select the component from the context
menu.

Figure 4.4 Inserting a component into the form from the context menu



4.4 Inserting a Parent Component 25

3. Define the component properties in the Properties view on the Details tab; if you require other properties,
such as, style properties and additional size properties, call the respective methods on your component on
the Init tab as an expression.

Figure 4.5 Init expression on a poopup component

This method can be used to reuse a Form.

4.4 Inserting a Parent Component

You can select one or multiple form Components and wrap them with another components in the Form graphical
editor.

To insert such a parent form component over another component, do the following:

1. In the Form editor, right-click the component.

2. In the context menu, go to Insert Parent and select the component to use as the wrapper component.



26 Form Design

Figure 4.6 Wrapping component in a layout component

4.5 Deleting a Parent Component

To delete only the parent component and preserve its child components, right-click the parent component and click
Shift Children Up.

Note that the option is only available if the children can be accommodated in the form after the deletion; for example,
it is not possible to delete a Vertical Layout with multiple child components if it has a Panel component as its parent.

4.6 Searching for Form Components

If an error on a form component occurs during runtime, the server returns an error message with the modeling ID
of the form component. To search for the form component that caused the error in the current workspace, do the
following:

1. Go to Search > Find Form Component.

2. In the displayed search dialog, enter the ID.

4.7 Displaying Form Source Code

Since forms as well as their components are defined as Records with methods, you can display the entire Form
source in the Expression editor:

1. In the Form editor, right-click any form component.

2. On the context menu, select Display Form Expression.



4.8 Enabling Error Reporting on Components 27

4.8 Enabling Error Reporting on Components

To enable reporting of runtime errors so that they contain modeling IDs of involved components, run your server
with the -Dcom.whitestein.lsps.vaadin.ui.debug=true system property:

• If you are running PDS Embedded Server, go to Server Connection -> Server Connection Settings, select
the connection and click Edit.

Figure 4.7 Enabling modeling IDs on form components

• If you are connecting to another PDS server or you are using SDK Embedded Server, switch to Java perspec-
tive; go to Run > Run Configurations; select the configuration under Java Application or Remote Java
Application and add the property on the Arguments tab to VM arguments.



28 Form Design

4.9 Troubleshooting a Form

When troubleshooting a form, consider the following:

• Examine the form expression: right-click the form in the form editor and select Display Widget Expression.

• Add breakpoints to expressions in the form and run it in LSPS Debugger.

../pds/Debugging.html


Chapter 5

Actions on Forms

All forms allow you to perform the following actions:

• execute some logic before and after the form is initialized

• acquire device location

• acquire browser window size

• create transient versions of persisted data

• save the form

• submit the form

• navigate to another page



30 Actions on Forms

Figure 5.1 Submit call attached to button click listener

5.1 Executing Logic Before and After Form Initialization

To execute some logic, before or after the component tree of your form is initialized (to create a pre-init or post-init
hook), add the required code to the preCreateWidget() or postCreateWidget() method in the methods
file of the form.

Example content of the MyTable.methods file with methods for MyTable.form

MyTable {
~

private void preCreateWidget() {
//running an asynchronous model instance that will notify
//the respective users about that somebody opened the document and
//is about to edit it:
createModelInstance(false, getModel("notifications"), null);

}
~

private void postCreateWidget() {
//get a list of form components of the hl layout component:
componentList := hl.getComponents();
//sets the value of a label to display the list of components:
compListLabel.setValue(toString(componentList));
//display a popup on form load:
createMyPopup().show();

}
}



5.2 Detecting Location 31

5.2 Detecting Location

To detect geoposition of the device in your form, use the Forms.detectLocation() method.

The instructions for the client browser on how to provide the geographical position data is defined by the Position←↩

Options object that can be passed as parameter:

• enablehighaccuracy: position accuracy (if true, the GPS position is requested; the default value is false)

• timeout: time in milliseconds that can pass before the call fails

On such failure, the call returns GeolocatorError.Timeout. The countdown starts when the user
permits the detection. By default, no timeout is applied.

• maximumAge: maximum accepted age of a cached position

The default value is 0, so that cached positions are not accepted.

If no PositionOptions is passed the default values are applied.

Example detectLocation() call

Forms.detectLocation(
new forms::PositionOptions(

enableHighAccuracy -> true,
timeout -> 10000,
maximumAge -> 1000), { ge ->

forms::notify( caption-> "This is the position: "+ ge.position + " error: " + ge.failure)
}

);

5.3 Checking the Size of the Browser Window

To get the current size of the browser window in DIPs, run the Forms.getBrowserWindowSize() method.

5.4 Creating Transient Data in Forms

When editing a shared record in forms, the changes are applied instantly: when you change the value in a text
field that is bound to a record property, the change is persisted when the field loses focus. Generally this is not the
required behavior: you want to apply changes only on submit or when some other confirming action takes place.

To implement such a behavior, use proxies of your record in forms.

Important: Proxy objects are not supported by forms created with the ui Module: these forms use
execution levels created with the (../ui-vaadin/uispecialcomponents.html::viewmodel) compo-
nent to isolate any changes instead.

When designing forms that make use of change proxies, consider creating and merging objects out of your form
definition: This will keep your form definition easier to maintain and reuse since it will hold only presentation logic.
You can do so by defining a parametric constructor that will take the logic-related arguments, such as, change
proxies, and action handlers.

For examples, refer to Creating a Modal Popup and Creating a Public Popup.

../pds/recordchangeproxy.html
../ui-vaadin/index.html#executioncontexts


32 Actions on Forms

5.5 Saving a Document or Todo

To save the Document or To-Do with your Form, call Forms.save(): the state of the Document or To-do will
be saved as the internal state of the Document or To-do as part of its model instance. The method returns the
shared record instances human::SavedDocument or human::Todo depending on whether it was created in
a document or in a todo respectively. As part of the save action the form component tree is garbage collected by
the LSPS garbage collector to prevent too big a component trees from being saved.

Note that while Saved To-dos remain accessible to the user even after they navigate away from the To-do page,
you will probably need to provide a way how to access saved Documents: for example, you could create another
document with a form that will contain a list of available saved Documents. Saved Documents can be accessed via
the SavedDocuments shared record.

Important: The save action fails if the user attempts to save a Popup state.

5.6 Submitting a To-Do or Document

To submit a to-do or document, call the static Forms.submit() method. Typically you will do so on button click:
insert a Button component into the form and in its Details in the Properties view define the call in the Click Listener
property:

{e -> Forms.submit()}

The method can define a Navigation parameter: on submit the form will navigate to this location:

{e -> if myForm.isValid() then Forms.submit(new UrlNavigation(url -> "www.lezecka-akademia.sk")) end }

Important: If the underlying User Task or Document defines a Navigation parameter, the submit()
Navigation is ignored. If neither the User Task or Document or the submit() call define a Navigation,
the system navigates to the To-do List or your home page.

5.7 Navigating from a To-Do or Document

To navigate from a form, use one of the navigate methods of the Forms record:

def Button navigateButton := new Button("Navigate", {e -> Forms.navigateTo(new UrlNavigation(url -> "http://sme.sk"))});
//button that navigates to a new document that has a Navigation Factory function:
def Button navigateToDocumentButton := new Button("Navigate", {e -> Forms.submit(); Forms.navigateTo(getMyForm(12))});

On navigation, the current transaction is committed: if you are performing any action after the call, these will
take place in a new transaction.

Note that navigation on submit for Documents can be defined directly on the Document definition as well.

../modeling-language/transactioninmodelinstances.html


Chapter 6

Mobile Forms

LSPS provides support for creating mobile forms so that you can display the forms of LSPS applications in a specific
way on a mobile device or display a mobile-friendly version of the form.

Note: If you are creating a mobile LSPS application, do not aspire to substitute the desktop
application: the mobile application should be an extension of the desktop application.

Also make sure to follow the common guidelines for mobile applications: keep the forms simple and
intuitive.

To create mobile versions of your forms, do the following:

• In your form, add the Resize Listener to detect the screen size on runtime: from the listener expression, call
the getBrowserWindowSize() function to get the width and height of the device screen in DIP (density
independent pixel) of the device.

• Define in the listener how the form components should behave:

– For adaptive design you can simply hide components, or change their properties.

– For mobile-dedicated version, consider embedding the form versions for different devices in a layout
component and hide and display or hide the layouts from the Resize Listener expression based on the
window size.

Consider using the same binding for the input components in individual Form version to keep any data that the
user provides in all form versions. This will allow the system to preserve the input in case a form component
is hidden on device resize (the user rotates the device).

Important: If the user provides invalid values in the form and the Form component will be hidden, the
invalid values cannot transferred to the displayed form. Consider handling such situations in your form.



34 Mobile Forms



Chapter 7

Form Components

Form components constitute your form hierarchy: They are implemented as Records with Fields and methods and
have the forms::Form Record as its super type with the form widget.

Every component allows a set of common component actions and can define the following of properties:

• ID: identifier of the component on design time

ID allows you to reference the component from another component in the form while designing it.

• Modeling id: identifier of the component on runtime

Modeling id is generated automatically and serves to identify form components on runtime.

• Caption: a String expression rendered as label

If the caption references localization identifiers, these are resolved automatically to the target locale. Note that
the caption is rendered by the parent layout component. Hence if you create a form with a sole component
with a caption, the caption will not be rendered in the form. This is due to limits of the Vaadin framework.

• Description: tooltip displayed on hover

Component-specific properties can be set on the Detail tab in the Properties view or on the Init tab. Both become
part of the form tree.

You will work with the following types of components:

• group components that can hold other components and generally define the form layout

• input and action components so the user can interact with the forms

• Expression component, so you can define your component in the Expression Language

• Reusable Form component so you can reuse an existing form

Note that you can implement a custom form component if required.

../custom-application/creatingformscomponent.html


36 Form Components

7.1 Binding of Components

Some form components hold a value: For example, a Text Area component holds a String value with its text. You
can get the value with the getValue() call and set it with the setValue() call.

However, if you want to work with the value, you can bind the component to a variable or a variable field if the
variable is of a Record type:

• When the value of the component changes, the value in the variable to the new value;

• When the component is loaded or refreshed, its value uses the value in its Binding.

The variable must be of the same type as the value in the component, in the case of the Text Area, it must be of
type String.

Note: If the user enters a value into a component, which cannot be stored in the target object, the
component validation fails: In such a case, the value is not stored in the target object and an error
message is displayed on the component.

7.1.1 Setting Component Binding

To set the target object of binding, either call the setBinding() method or set the Binding property in the
Properties view. I

Note: By default, the binding is set to a default object which takes any value so you don't have to set
the binding if not needed.

Depending on whether and when the binding value should be reloaded, you can use one of the following types:

• Reference: reloaded when the component is initialized or refreshed

• Value: loaded when the component is initialized (This is convenient if you want to set a fixed value to a
component.)

• Closure: loaded when the component is initialized or refreshed

• Custom: custom implementation of the Binding interface (This allows you to apply custom logic to the binding
before it is loaded.)

Example: Let us consider a Form with three Label Fields (Label Fields are components that simply
display the value of the Binding as a read-only value):

• LabelA uses Reference Binding to the Date variable &varTime with its initial value set to the
time returned by now()

• LabelB uses Value Binding now()

• LabelC uses Closure Binding now()

All Labels will show the current date and time when the Form is loaded. If we add a Button component
that will refresh the Label components on click, then on click:

• LabelA will display the value stored in the varTime variable.

• LabelB will keep the same time value.

• LabelC will always update the time to the current time.



7.1 Binding of Components 37

7.1.2 Getting Component Binding

To get the value set in the component target object, call getValue() on the component.

Note: A component value is stored in the target object, only if it meets the formatting requirements, for
example, if you enter a character into a Decimal Field, the value is ignored and the component displays
an error.

7.1.3 Clearing Component Binding

To clear the component binding, bind the component to a reference with the value null.

def ContentMode cleanBinding := null;
componentWithValue.setBinding(&cleanBinding);

7.1.4 Implementing Custom Binding

If you want to process binding data before they are used by a component, implement your custom Binding data
type. This allows you, for example, to convert input values to other units.

1. Create the Binding data type that implements the forms::Binding interface.

(a) Create data type definition

(b) Import the forms::Interface type and extend it.

Figure 7.1 Custom binding record



38 Form Components

2. Implement the interface methods:

(a) Right-click your binding record and select New Methods Definition.

(b) Open the newly created methods definition file and implement the following methods:

• get() returns the component value

• set() sets the component value

• getBinding() returns the property of a RecordAndProperty object; the validations applicable
for the property are used to validate the value (refer to the documentation on constraints);
usually you want to return null;

FileReader {
public Object get(){

def File myfile := getResource("custom_binding", filename);
fromBinaryToString(myfile.content);

}
public void set(Object value) {

error("Cannot set target file! Readonly!")
}
public RecordAndProperty getBinding() {
null

}
}

Now you can use your binding implementation as Custom Binding in your form. Consider using and distributing your
implementation as part of a custom Library.

Figure 7.2 Custom binding on a Label component

7.1.5 Defining an Initial Value of a Component

To define the initial value for a component where the data comes in later, define a form variable with the initial values;
and define the binding as a closure that provides the appropriate data:

For example myFormVariable != null ? myFormVariable : null

../pds/DataValidation.html


7.2 Validation of Components 39

7.2 Validation of Components

When you insert a value into a form component, the form automatically checks if the value meets the basic format
requirements, such as, whether you entered a decimal value in a Decimal Field

If you want to introduce further validation rules to a forms::form, you have the following options:

• Add validators to input components to validate input automatically.

• Set custom error messages on any form component: Handling of the message is fully under your control.

• If your components are bound to records, you can validate the input against the rules defined for the records.

7.2.1 Adding a Validator

To add validation rules and validate the values in an input form component when the value might have changed,
add validators to the components.

The value is validated against its validators on every validation run:

• when the validator is added;

• when the value might have changed, for example, the component lost focus, its setValue() method is
called, isValid() is called, the component is rendered, etc.

To set a validator, call the addValidator() method on the component. The method takes a closure as its input
argument:

• The input of the closure is the value in the input component: on a Text Box, the input is its text; On a Decimal
Field, the input is the decimal value. Mind that this value must be in the correct format.

• The closure returns the error message that is displayed on the component. If the closure returns null, the
component is valid.

If you want to validate only after some action takes place, name your input component and add the validator in the
appropriate listener expression.

Example expression that adds a validator to a Date Field

MyDateField.addValidator (
{ dateValue:Date ->
if

dateValue > date(2018, 3, 3)
then

null
else

"The date must occur later than March 3, 2018."
end

}
);

You can get your validation messages and messages caused by incorrect input format with the get←↩

ValidatorsMessages() or getValidatorsMessagesRecursive() methods.



40 Form Components

7.2.2 Validating Record Constraints in Forms

When acquiring data for a record from a form, generally the input components in your form are bound to a record
or record field: the binding is set to type Reference and its value to patient.ssn. For such form components,
you can check whether the input values meet the record constraints and display the constraint messages, called
data-error messages.

To validate the value and display data-error messages in a form, do one of the following:

• To validate the value automatically, call inferValidator(): The method adds a validator to a compo-
nent, which keeps checking the constraints of the bound Record Property and displays any returned constraint
messages on the component.

c.inferValidator(null)

Note: The inferValidator() creates a validator object for the component: The input value
is assigned to the validator object only if it is in the correct format: If the users enters a string into
a Date Field, the string does not make it into the validator object. Therefore, if you call infer←↩

Validator() after the form component has been assigned a value, then any subsequent in-
valid values are ignored and the first value is always restored.

• To validate at a particular moment, call validate() and showDataErrorMessages(): The validate()
call returns a list of data-error messages and showDataErrorMessages() erases the currently displayed data-
error messages and then displays the received data-error messages on the subtree of the second argument.

{ e -> showDataErrorMessages(validate(currentPersonVariable, null, null, null), null)}

Example on-click validation of the newUnit record instance in a Listener expression:

{ click ->
def List<ConstraintViolation> cv := validate(newUnit, null, null, null);
if cv.isEmpty()

then
mergeProxies(false, newUnit);
Forms.submit()

else
def List<String> messages := collect(cv, {cvi:ConstraintViolation -> cvi.message});
//The showDataErrorMessages() function displays violation messages
//on the subtree of the component defined by the second argument.
//The validation messages are displayed on the components that have the Binding
//to the data that produced the constraint violation:
showDataErrorMessages(cv, MyButtonComponent);

end
}

To get the data error messages of a form component, use the getDataErrorMessages() or getData←↩

ErrorMessagesRecursive() methods.

To clear the data error messages, use the clearConstraintViolations() function.

More information on constraints is available in the Modeling Guide.

7.2.3 Checking Component Validity

To check if a component and all its children are valid, use call the isValid() method. The method searches for
any validators, including inferred validators, that return a error message. If at least one error message is found, the
method returns false.

Custom error messages are ignored by the isValid() method.

../pds/DataValidation.html


7.3 Actions on Components 41

7.2.4 Setting a Custom Error Message

To have full control over when an value in an is validated, use the custom error message of components: With the
setCustomErrorMessage()method, you can set and display one arbitrary error message on any component.

To get the error messages of a form component, call the getCustomErrorMessage() method and to clear
the error messages, call setCustomErrorMessage(null) on your component.

Since error messages are not produced by validators or constraint mechanism, they do not represent a validation
breach: consequently, the isValid() call IGNORES error messages. They are simply messages attached to
components.

{ e ->
def String val := text.getValue() as String;
if val.isBlank() or val.length() < 3 then
//setting error message on a component:
text.setCustomErrorMessage("Must be at least 3 characters.");

else
Forms.submit()

end
}

7.2.5 Getting All Error Messages

To collect the custom error, data error, and validator messages on a form component, use the getAllError←↩

Messages() or getAllErrorMessagesRecursive() methods.

7.3 Actions on Components

7.3.1 Refreshing a Component

When you change a value not related to the underlying data source in your form, such as a caption, table and
column width, etc. the component in the client browser is refreshed instantly.

However, if you change the related data, such as the data source, you need to call the refresh() method on the
component to have the component rendered with the modified data. The refresh() call causes refresh of all
child components as well: the binding is reloaded, the data source is refreshed, and component validation triggered.

You do not need to call refresh() if you use the setValue() calls to modify the component data since it is
called automatically.

7.3.2 Setting the Visibility of a Form Component

A visible component is included in the form: by default, all components apart form the Popup are visible. If you set
a component as not visible, it is excluded from the form hierarchy.

• setVisible(Boolean visible∗): set the component visibility

• isVisible(): returns the component visibility



42 Form Components

7.3.3 Setting the Caption of a Form Component

• getCaption() returns the component caption

• setCaption() sets the component caption The setCaption() call localizes any localization identifiers au-
tomatically; hence there is no need to include the localize call.

Important: The caption of the Text Field is rendered by the parent layout component. Hence if you
create a form with a sole Text Field component, the form will be rendered without its caption text. This
is due to limits of the Vaadin framework.

7.3.4 Adding an Icon to Form Component

All form component can define their icon:

• getIcon() returns the component icon

• setIcon(Resource) sets the component icon

c.setIcon(FileResource.fromModule("form_components", "action/img/person.png"));

Note that the font Awesome has its Resource record, hence you can use its icon directly from the setIcon() call:
c.setIcon(new FontAwesome("minus-square"))

Currently it is not possible to set the icon size: use bitmap files with the correct size or adjust the style with your
CSS files.

Important: The icon of any component is rendered by the parent layout component. Hence if you set
icon on the root component, the form will be rendered without the icon. This is due to limits of the
Vaadin framework.

7.3.5 Setting a Component as Read-Only

When a component is in read-only mode, the user cannot change the value of the component. The mode does not
influence other functionalities of components.

• setReadOnly(Boolean readOnly∗): sets a component as read-only or editable

• isReadOnly(): returns the current read-only status



7.3 Actions on Components 43

7.3.6 Setting Component Size

Every component defines its default size settings (height and width) which you can change with the size-related
methods setWidth(), setHeight(), and setSize().

Size can be defined as follows:

• in percent of the size of the component slot: a component slot is space allocated to the component;

Note: This space is restricted restricted by the parent layout component and can be adjusted with
the Expand Ratio methods.

Consider two special values:

– 100% referred to as full since it sets the component to fully fill its slot

– null referred to as wrap since it sets the component to take the minimum size required to accommo-
date its content.

• absolute size:

– in pixels (px), picas (pc), points (pt), mm, cm, or inches (in)

– font-relative units:

* em: size in factors of the letter m size

* ex: size in factors of the letter x size When you define absolute size of your component, make
sure it does not overflow its component slot if this is not required. SUch situations can lead to
overlapping content.

7.3.6.1 Default Component Sizes

All components have their default sizes used if you do not specify their size explicitly:

• Width is set to 100% or full: the width is set to the width of the parent component (identical to 100%)

The exception are all Input Components, Horizontal Layout, and Popup which wrap their content by default.

• Height is set to null or wrap.

The only exception is the Map component that has a fixed height of 400px.

7.3.6.2 Setting Absolute Size

When setting component size, use the setter methods setWidth() and setHeight(): the methods take
parameters in the format [number][units], such as 100%, 10em, 25px.

You can get the current size with the getWidth() and getHeight() methods.

7.3.6.3 Wrapping Content

To make a component wrap its content, call the respective setter method with the null parameter, for example,
c.setWidth(null) or one of the wrap methods:

• setWidthWrap() or setWidth(null)

• setHeightWrap() or setHeight(null)

Note that if the size is set to wrap, it is considered null.



44 Form Components

7.3.6.4 Filling Parent

To set the size of a component to fill its component slot, call a full method on the component.

• setWidthFull() or setWidth("100%")

• setHeightFull() or setHeight("100%")

• setSizeFull() combines both calls above

7.3.6.5 Setting Expand Ratio

Expand ratio sets the size of the component slot in proportion to the parent component size. Mind it does not set
the size of the component itself.

Layout components allocate to their children component slots of equal sizes; the child components fill the slot as
defined by their properties:

• They can fill the slot or a percentage of the slot.

• They wrap their content and the slot adapts to this minimal size.

• They use their absolute size.

Important: When you set absolute size on a component, note that this does not influence the size
of the component slot and might result in content overlap.

The ratio expand applies only to child elements of Horizontal, Vertical, and Grid layouts since only these compo-
nents allow you to change the slot size:

When the Layout component is calculating the component slot sizes, first it gives the required space to components
that wrap their content (the slot adopts the size of the component); then it calculates the size of the remaining
available space and distributes this space either equally or according to the defined expand ratio numbers.

• setExpandRatio(Decimal ratio)

• getExpandRatio()



7.3 Actions on Components 45

7.3.6.6 Setting Alignment

You can align the component with its slot: the alignment impact depends on the size of the component: if the
Component is as wide as its slot, bottom and top alignment will have no effect.

• setComponentAlignment(Alignment alignment∗)

• getComponentAlignment()

7.3.7 Add Style Name to a Form Component

Note: You can only add style names to form components from a GO-BPMN model: To create custom
SCSS style rules, implement them in the style sheets of the Application
User Interface.

To add a style name, that is the style name to the class attribute, of a component, use one of the following methods:

• addStyleName(selector1, selector2) adds the selectors to the class attribute to the compo-
nent. This call does not modify the classes the component already has. The call triggers the Repaint←↩

RequestEvent on the component which you can handle if necessary.

By default the following selectors are available: l-border-none, l-border-left, l-border-top,
l-border-right, l-border-bottom, l-highlighted, l-emphasized, l-grayed,
l-border.

Note: For all your classes, under the hood, the system creates their copy with the name
v-<component_type>-<class_name> so you can style the component either in the
class <class_name> or v-<component_type>-<class_name> in your SCSS file.

• setStyleName(selector1, selector2) replaces the class attributes of a component with the val-
ues passed in the parameters.

You can work with style name using the following methods:

../custom-application/customizingthemes.html
../custom-application/customizingthemes.html


46 Form Components

• getStyleName() returns the class attributes of the component.

The method returns only the attributes that you added with the setStyleName() method: classes set by
the system are ignored.

• removeStyleName() removes the class values passed in the parameters.

You can remove only the class attributes that you created with the setStyleName() and remove←↩

StyleName() calls: classes set by the system cannot be removed.

For information on how to add your style and style rules, refer to Add Style Name to a Form Component.

7.3.8 Disabling a Component

A disabled component has the disabled style. Disabled components cannot be modified or updated in any way.

• isEnabled(): retuns the current enabled status

• setEnabled(Boolean enabled∗): sets the component to disabled or enabled

7.3.9 Setting a Tooltip

To display a tooltip, when the user hovers over a component, set the description of your component with the set←↩

Description() method.

Important: The description is handled as HTML; hence make sure no injection and XSS vulnerabilities
can be exploited.

myLabel.setDescription({ r:MyRecord ->
"Status of row object: " + m.status + #10 + m.id});

7.3.10 Displaying a Notification Dialog

To display a notification, use the notify() function.

The displayed notification can be of the type:

• Info: immediately fades out with no delay

• Warning: disappears after 1.5 second

• Error: requires user click to disappear

• Tray: immediately fades out and is displayed in the bottom-right corner

MyTextField.setOnChangeListener(
{e->
notify(

caption -> "Notification on Value Change", "" + MyTextField.getValue(),
ntype -> NotificationType.Info)

}
);



7.3 Actions on Components 47

7.3.11 Defining a Context Menu

Each form component can define its context menu which is displayed when the user right-clicks the component.

The menu contains a list of menu items, which trigger an action when clicked: the action is defined by their on←↩

Click parameter.

To define a context menu on a component, use its setContextMenuItems() method.

Example context menu with one item

c.setContextMenuItems(
[
new forms::MenuItem(

caption -> "Show Details",
onClick -> { ->

showPatDetail(somePatient).setVisible(true);
}

)
]

)

Menu items in the context menu can have child menu items. Note that the onClick closure on a menu item with a
submenu is ignored (only clicks on leaf menu items can be handled).

Example context menu

c.setContextMenuItems(
[
new forms::MenuItem(

//This onClick closure is ignored
//since the item has a submenu:
onClick -> { ->

c.setValue("You just clicked the Menu Item option");
c.refresh();},

subMenu -> [
new forms::MenuItem(
onClick -> { ->
MyText.setValue("You just clicked the Submenu Item option");
MyText.refresh()},

caption -> "Submenu Item")],
caption -> "Menu Item"),

new forms::MenuItem(
onClick -> { ->
MyText.setValue("You just clicked the Menu Item option");
MyText.refresh()},

caption -> "Another Menu Item"
)

]
)



48 Form Components

7.3.12 Handling a Right-Click Event

To handle a right-click on a component and possibly build a context menu dynamically, use the setContext←↩

ClickHandler() method.

c.setContextClickHandler(
{ x:ContextClickEvent ->

eventText.setValue("You just right-clicked component " + x.source.modelingId);
}

)

7.3.13 Defining a Value Provider

Value provider defines the content of the cell in the row. Its value is based on individual object return gradually from
the Data Source; it is used to define what value a column of a Table, Tree Table, Grid or Combo components should
display.

Important: Value Provider must return values of a simple data type: If it returned Objects of another
type, it would not be possible to filter and sort them.

You can define the following Value Provider types:

• Property path: path to a Property of the data source Record

Person.name

• Closure: a closure that returns the value for the cell with the Value Provider object as its input

The Closure Value Provider is typically used for calculated fields (note that when calculating fields, you will
need to refresh the entire Grid when one of the relevant values changes).

{ person -> person.firstname + person.surname}

• Constant: a constant value (for example, caption for an Edit Button; the on-click action is then defined in the
Renderer)

• Identity: the row object type

Integer

• Custom: implementation of your custom value provider



7.3 Actions on Components 49

Figure 7.3 Form with a Grid Column: the Value Provider casts the Row object to a String; the String is then
used as the label of the Button; On click, the Closure in the Renderer property is executed.



50 Form Components



Chapter 8

Reference

• Container Components

• Input Components

• Output Components

• Action Components

• Special Components

8.1 Container Components

Container components can define one or multiple child components serve to organize the content.

8.1.1 Common Properties and Functionalities

On all container components, you can get do the following:

• get information about its child components:

– the number of child components with the getComponentCount() method

myLayout.getComponentCount();

– the list of child components with the getComponents() method The method returns a list of
components: the list items are returned as defined in their toString() method;

myLayout.getComponents();

When calling the getComponents() method, you will need to do so after the form was initialized: to
do so, call the method in the postCreateWidget() method of the form. The call is pre-generated
in the methods file of your form.



52 Reference

8.1.1.1 Setting Spacing and Margin

All container components can define their style with the following methods:

• setMargin(Boolean margin_enabled): sets a default margin of the container component

If you want to change the margin size, do so in the Theme Sampler and use the generated style sources
(refer to the section Customizing Application Style in the Software Development Kit guide).

• setSpacing(Boolean spacing_enabled): sets a default spacing between the child components

It is not recommended to customize spacing since it might result in a inconsistent UI presentation; consider
changing font size to meet your requirements.

8.1.1.2 Populating Container Components

You can populate your container component as follows:

• using a parametric constructor with the components as parameters, for example, new Form←↩

Layout(textField, submitButton, navigateButton)

• using the addComponentmethod of the component record, for example, layout.addComponent(text←↩

Field)

8.1.2 Container Component Reference

8.1.2.1 Layout Components

Layout components can have multiple child components: by default the child components are allocated equal space
within the layout, so if you have 3 child components in a layout, each will be allocated 33% of the available space.
This space is referred to as the component slot. To change the size of component slots, use Expand Ratio on the
child components. You can then call methods on the child elements to define their size in their slot.

8.1.2.1.1 Horizontal Layout

The Horizontal Layout component ( ) arranges its children horizontally.

Mind that by default the layout wraps its components, so if the components overflow the layout and they are set to fill
the parent, the overflowing content will not be visible. To remedy this situation, call setWidthFull on the layout
component.

Figure 8.1 Form with multiple Horizontal Layouts

Expression that returns a Horizontal Layout with child components

def forms::HorizontalLayout hl := new forms::HorizontalLayout();
hl.addComponents(

{
new forms::Button("Confirm", {e -> Forms.submit()}),
new forms::Button("Cancel", {e -> Forms.navigateTo(new AppNavigation(code -> "todoList"))})

}
);
hl



8.1 Container Components 53

8.1.2.1.2 Vertical Layout

The Vertical Layout component ( ) arranges its child components vertically.

Figure 8.2 Form with Vertical Layouts



54 Reference

Figure 8.3 Rendered form with Vertical Layouts

def forms::VerticalLayout vl := new forms::VerticalLayout();
def forms::Table t := new forms::Table();
t.setDataSource(new TypeDataSource(User));
~
t.addColumn(new forms::TableColumn

(valueProvider -> new PropertyPathValueProvider(User.name),
sortable -> true, filtrable -> true,
generator -> { username:String -> new Label(username)},
modelingId -> "87jlkjh",
data -> null));

t.addColumn(new forms::TableColumn
(valueProvider -> new PropertyPathValueProvider(User.note),
sortable -> true, filtrable -> true,
generator -> { note:Object -> new Label(note)},
modelingId -> "87j98098jh",
data -> null));

~
vl.addComponents([t, new forms::HorizontalLayout(new forms::Button("Create", { click -> openMyPopup()}))]);
vl;

8.1.2.1.3 Grid Layout

The Grid Layout component ( ) is a container component that can hold multiple form component elements, which
are arranged in a grid manner, that is, in a table-like way. You can add rows and columns to the grid using the Add
( ) and Delete ( ) buttons on the Grid Layout component.



8.1 Container Components 55

Important: We recommend to use Grid Layout only if it is not possible to solve the layouting of your
form with the Horizontal and Vertical Layouts easily. Also, make sure not to use nested Grid Layouts
since this may cause performance issues.

Figure 8.4 Form with Grid Layout: Note that the Popup has the width set to a value and the Text Area has
its width set to full. The Text Area will always adapt to fill the Grid Layout while the input fields are

implicitly set to wrap their content and will retain the size regardless of the Popup size.

Expression that returns a Grid Layout component

def GridLayout gl := new GridLayout();
gl.addComponentToGrid(new Label("row1,column1"), 1, 1);
gl.addComponentToGrid(new Label("row2,column1"), 2, 1);
gl.addComponentToGrid(new Label("row1,column2"), 1, 2);
gl.addComponentToGrid(new Label("row2,column2"), 2, 2);
gl.setRowExpandRatio(0,7);
gl.setColumnExpandRatio(2,2);
gl



56 Reference

Figure 8.5 Form with Grid Layout

8.1.2.1.4 CSS Layout

The CSS Layout component ( ) is rendered as a <div> element that wraps the inserted child components.
To set its style, use the setStyleName() method.

def CssLayout cl := new CssLayout();
cl.addComponent(new TextField("Name:", &name))

8.1.2.1.5 Form Layout

The Form Layout component ( ) arranges child components horizontally with their captions displayed on the left.



8.1 Container Components 57

Figure 8.6 Form with Form Layouts

Figure 8.7 Form with Form Layouts

Expression that returns a Form Layout with child components

def forms::FormLayout fl :=
new forms::FormLayout(

new TextField("Name:", &name),
new Label("Please confirm:"),
new forms::CheckBox("Do you agree with the conditions as stated in the consumer agreement?", &agreed))

8.1.2.1.6 Panel

The Panel component ( ) adds a label and scroll to its child component automatically if applicable.

Note that to have the scrollbar displayed, the following must be true:



58 Reference

• The child component must not define its size as 100% or full (There is no sense in scrolling a child that fills
its parent fully since there is nothing to scroll).

• The Panel must not be set to wrap its content: this is the default size setting of the Panel component.

Figure 8.8 Vertical Layout has the size of the page and Panels fill the layout. The Labels wrap their content
by default; hence the Label has its size that depends on its content; its Panel has the size determined by

the Panel and Vertical Layout



8.1 Container Components 59

Figure 8.9 Form with Panels with scrollbars

Expression that returns a Panel component

def forms::Panel p := new forms::Panel("Lorem Ipsum", new Label(lorem));
p.setSizeFull();
p

8.1.2.1.6.1 Setting Scrollbar Position

To set the scrollbar position on a Panel component, call the scrollToTop() or scrollToBottom() method.

8.1.2.1.7 Collapsible

The Collapsible component ( ) allows the user to collapse and expand its content.



60 Reference

Figure 8.10 Form with a Collapsible component

Figure 8.11 Form with a Collapsible rendered

Expression that returns a Collapsible component

def forms::Collapsible p := new forms::Collapsible("Lorem Ipsum", new Label(lorem));
p.setSizeFull();
p



8.1 Container Components 61

8.1.2.2 Other

8.1.2.2.1 Tab Sheet

The Tab Sheet component ( ) holds only Tab components, which can then contain further content.

Figure 8.12 Form with Tab Sheet and Tab components

Figure 8.13 Tab Sheet component with Tabs

Related methods:



62 Reference

• getTabs(): returns the list of tabs of the Tab Sheet

• addTab(TabContent, TabName): adds a tab with the TabName and TabContent

• getSelectedTab(): returns the currently selected tab

• getTab(TabId): returns the Tab with the ID

• removeTab(Tab): removes the Tab

Expression that returns a tab sheet with one tab

def TabSheet ts := new TabSheet();
ts.addTab(new Label("Label in a tab"), "tab name");
//get the content of the first tab(Label):
def Component tabRoot := ts.getTabs()[0].getContents();
...

ts

8.1.2.2.1.1 Adding a Tab

To add a new tab to a tab sheet, call the addTab() method of the tab sheet: the arguments represent the content of
the tab, and that its caption and its component).

{ e -> MyTabSheet.addTab(new Label("Here is your new tab!"), "New Tab")}

8.1.2.2.1.2 Enabling Tab Closing

Tabs cannot be closed by default: to add the Close button to a Tab, call setClosable(true) on the Tab
component.

8.1.2.2.1.3 Selecting a Tab

To select a particular Tab in a Tab Sheet, use the setSelectedTab(<TAB_INDEX>) call on the sheet: To
get the index of a tab, call getIndex() on the Tab.

When you select a Tab in the client, the system throws a TabChangeEvent. You can listen for the event on the
parent Tab Sheet: call the setTabChangedListener() method with the appropriate handling on the component.

Note that if you want to get the Tab component selected when the Form is loaded, you need to do so in the post←↩

CreateWidget() method:

MyForm {
~

private void postCreateWidget() {
setResultContent();

}
~

private forms::Tab getCurrentTab(){
myTabbedSheet.getSelectedTab();

}
~

private void setResultContent(){
resultTextField.setValue("You have selected the " + getCurrentTab() + " tab.");

}
}



8.1 Container Components 63

8.1.2.2.2 Accordion

The Accordion component is just like Tab Sheet but with Tabs arranged vertically.

Figure 8.14 Inserting a Tab into an Accordion

Expression that returns an Accordion with one Tab

def Accordion ac := new Accordion();
def VerticalLayout t1 := new VerticalLayout(new Label(now()));
ac.addTab(t1, "Reports");
ac

Figure 8.15 Rendered Accordion



64 Reference

8.1.2.2.3 Dashboard

The Dashboard component ( ) is rendered as the space for Dashboard Widget components (the Widgets can be
dragged-and-dropped, minimized, and maximized within the Dashboard). Whenever the user performs an action on
a Widget, the system throws a DashboardUpdateEvent with information on the change. The event can be processed
by the Dashboard as defined in the onWidgetUpdate property.

Figure 8.16 Form with a Dashboard component with Dashboard Widgets

Figure 8.17 Form with a Dashboard component with Dashboard Widgets rendered in the Application User
Interface (Widget being moved)

Note: By default, the Dashboard width is set to fill its parent, while the height adapts to the space
required by its widgets (the dashboard height wraps the content dynamically).

8.1.2.2.4 Dashboard Widget

The Dashboard Widget component ( ) is a draggable, resizable component of a Dashboard: In the Form, it must
be the child of a Dashboard component.

The position of a widget in its Dashboard is defined as the x and y coordinates . However, you can allow the system
to position widgets automatically using the Autoposition property: when Autoposition is set to true, any x and y
coordinates on the Widget are ignored. Note that Autoposition is set to true be default.

The Widget size is defined as a relative portion of the Dashboard: the Dashboard full width represents 12 units.
Hence Widget size is defined as an integer 1-12 which represents the number of units it should occupy in the
Dashboard.

Apart from its content and generic component properties, a Widget can define the content of its toolbar (next to its
caption) using the setToolbar() method in addition to the Minimize, Maximize, and Close buttons.



8.1 Container Components 65

8.1.2.2.4.1 Adding a Dashboard Widget

To add a widget into your Dashboard, you can insert it into your Form from the palette in the Form Editor: this widget
will be displayed in the Dashboard on Dashboard load.

If you want to insert a Dashboard Widget dynamically, use the addWidget method of the Dashboard.

Adding a Dashboard Widget to a Dashboard on an event reception

{ e -> MyDashboard.addWidget(
new Label("This is the content of my widget"),
new Rect(x -> null, y -> null, width -> 3, height -> 4),
true).setCaption("Caption")

}

8.1.2.2.4.2 Removing a Dashboard Widget

To remove a widget from your Dashboard, call the removeWidget() method of the Dashboard.

8.1.2.2.4.3 Handling Changes on Dashboard Widgets

When the user changes the position of a Widget, resizes it, or closes it, the system throws a DashboardUpdate←↩

Event: The event holds information on the Widget that caused the event, the new position of the widget, and the
new state of the widget (Minimized, Restored in its widget size, Maximized, or Closed).

You can define how the Dashboard processes such events in its onWidgetUpdate() property: The property is of the
Closure type with the event as its input. Define handling of the event in its body.

Example of handling a change of widget state

c.onWidgetUpdate := {
e:DashboardUpdateEvent->
if e.widget == myWidget then

switch e.newState
case WidgetState.Minimized -> myWidget.setCaption("Minimized");
case WidgetState.Restored -> myWidget.setCaption("Restored");

end;
end;

}

8.1.2.2.4.4 Restoring Closed Dashboard Widgets

When you close a widget, the widget is discarded: if you want to re-display it, you need re-create it. Since when a
widget is closed, the system throws a DashboardUpdateEvent with the relevant information (the Widget that caused
the event, the new position of the widget, and the new state of the widget), you can handle such an event on your
Dashboard.

Example of handling a closed widget by displaying a button that recreates the widget when clicked

c.onWidgetUpdate := {
e:DashboardUpdateEvent->
//checking if the event comes from the correct widget and whether it was caused by close:
if (e.widget == myWidget && e.newState == WidgetState.Closed)
then

//adding a Button that will recreate the widget:
myVerticalLayout.addComponents(
[new forms::Button("Add My Widget", { e ->
MyDashboard.addWidget(

new forms::CheckBox("Check Box", &myBooleanVar), new forms::Rect(width -> 6, height -> 2), true);
})]
);

end
}



66 Reference

8.1.2.2.5 Popup

Popup is rendered as a floating dialog box with all the usual features and actions, such as drag, close, resize, etc.

You can design a popup in two ways:

• as a private Popup: these are defined as part of the particular form and cannot be reused.

• as a public Popup: these are defined in their own form definition. While complete forms have their supertype
set to forms:Forms, public popup forms have their supertype set to the type forms::Popup so they
can be inserted into another Form tree.

Popups can be modal; each popup can define its popup variables.

Figure 8.18 Modal popup

8.1.2.2.5.1 Designing a Private Popup

Private Popups can be instantiated only within their parent form and are also designed as its part; They cannot be
reused in other forms.

To create a private Popup, do the following:

1. Insert the Popup component into your Form outside of your Form tree.



8.1 Container Components 67

2. In its Properties view, enter the signature of the method that will return the popup, for example, edit←↩

PatientInPopup(Patient p). Do not implement the method: it is automatically added to the popup
factory.

Figure 8.19 Popup method signature with an input parameter

3. Insert the child components into the popup and define their behavior: if you are passing an input argument to
the popup method, you can access the input from any child component. Also note that you can define local
variables on a popup: right-click the popup in the Outline view to do so.

4. Call the popup method with the method you defined in the Method signature field from the form to create
the Popup object.



68 Reference

Figure 8.20 Displaying a popup on Grid-row click

Note that a Popup is invisible by default: set the Popup visibility to true to display it; you can use the
show() or setVisible(true) call to do so.

5. Close a Popup: from a popup component, set its visibility to false or call its hide() method. the Popup
is queued for garbage collection unless referenced somewhere in the form.



8.1 Container Components 69

Figure 8.21 Hiding a popup on button click

You can find a complete example of a private Popup with component refresh in the section Quickstart.

8.1.2.2.5.2 Reusing a Popup: Designing a Public Popup

Public popups, unlike private popups, can be used by multiple forms: public popups are snippets with the Popup
component that you can insert into another form.

To create a public popup, do the following:

1. Create a form definition.

2. In the Outline view of the form, double-click the root form component and in the Properties view, set forms←↩

::Popup as the Supertype.



70 Reference

Figure 8.22 Public Popup definition

3. Consider defining a dedicated constructor to set the popup properties and to define parameters of the public
popup from the form.

//Constructor that takes a parameter and assigns it to a form variable of the public popup
//The popup variable is then used as the binding of its components
public PublicPopup (Unit u) {
editedUnit := proxy(u);

}

4. To create the public popup in a form, call the popup constructor, for example, on a button click:

{ click -> new PublicPopup(new Unit())}

5. To display and hide the public popup:

(a) From within the popup, call show() in the constructor and hide() when required; for example on a
close button.

(b) From the calling form, create a form variable with the popup and call show() and hide() on the
variable when required.

6. To update the underlying form when the Popup is closed, set the close listener on the popup, for example:

{ e ->
def PublicPopup popup := new PublicPopup(u);
popup.show();
popup.setPopupCloseListener(

{ e -> MyFormWithPublicPopup.refresh()};
);

}

When creating a public popup, carefully consider:

• which logic to encapsulate in the popup;

For example, if you are creating a popup with user details, the popup might be used by forms to create a new
user as well as to edit an existing user: in such a case, you could define a popup parameter that passes the
edited user. If no user is passed, the popup constructor creates a new proxy user object; otherwise, it creates
a proxy over the passed user object.



8.1 Container Components 71

• ∗whether to display and hide the popup from within the popup or from the outside form;

In the example with the user edit and create popup described above, keep the displaying and hiding of the
popup inside the popup since it is governed by events within it: display the popup from its constructor; hide it
from a button in the popup.

Refer to the tutorial on editing Grid Data in a popup for an example of a public popup.

8.1.2.2.5.3 Creating a Popup Variable

To create a variable on a public Popup, do the following:

1. Open the form definition of your Popup.

2. Right-click the root Popup component in the Outline view.

3. Go to New > Variable

4. In the Properties of the variable, define its name, type, and initial value.

To create a variable on a private Popup, do the following:

1. Right-click the Popup component in the Outline view.

2. Go to New > Variable

3. In the Properties of the variable, define its name, type, and initial value.

Figure 8.23 Creating instance variable of a popup

../tutorials/gridwithpublicpopup.html


72 Reference

8.1.2.2.5.4 Creating a Modal Popup

To make a popup modal, set its modality with the showModal() method; for example, {e -> create←↩

Popup(proxy(Unit), true).showModal()}

8.1.2.2.5.5 Closing a Popup

To close a Popup, set its visibility to false; you can do so with the hide() or setVisible(false) calls.

To perform an action when a Popup is closed, use the setPopupCloseListener() method, for example:

c.setPopupCloseListener({ onCloseEvent -> debugLog({ -> "Popup closed"}, 200)})

8.1.2.2.6 Drop Zone

The Drop Zone component allows you to drag-and-drop one or multiple files into the browser to upload it.

It renders as an area where files from desktop can be dropped where the wait it is actually rendered is defined by
its child component.

The Drop Zone component defines the action on file upload in its upload-result listener closure. The closure has
two input parameters: the first one with the list of uploaded files and the second one with a list of error messages:

• When the upload succeeds, the List<File> parameter holds the uploaded files and the List<String> param-
eter message is null. Note that if you dropped into the zone multiple files, you will receive all the files.

• When the upload fails, the file parameter is null and the message is an error string.

You can restrict the number of files the user can insert into a drop zone in a single drag-and-Drop action with
setMinFiles() and setMaxFiles() method calls.

If you insert a Drop Zone component into another Drop Zone component, the "highest parent" Drop Zone overrides
its children.

While the files are being uploaded, the spinner is displayed and the application ignores user input.

Note: If the user drags-and-drops a file into the form in a browser but misses the drop zone the browser
takes over and handles the drop, that is, opens the file. To prevent this behavior, consider using the
Drop Zone component as the root component or at least as hight up in the component hierarchy as
possible.

Expression that returns a Drop Zone

def DropZone dz := new DropZone();
dz.setUploadResultListener(

{
uf:List<File>, errorMessage:List<String> ->

uploadedFiles := addAll(uploadedFiles, uf);
//uploadedFile is initalized to []

}
);

dz.setMaxFiles(2);
//enabling the dropzone:
dz.setDropEnabled(true);
dz



8.1 Container Components 73

8.1.2.2.6.1 Displaying Dropped Files

To visualize the dropped files, for example, display a preview of image files, when they are dropped and uploaded,
set the uploaded files as the content of the Drop Zone or of its child component.

Upload result listener that displays thumbnails of uploaded files in the given drop

The current batch is added to a new vertical layout, called imagesUplodedInThisBatch in the drop zone.

{
uploadedFiles:List<File>, errorMessage:List<String> ->
allUploadedFiles := allUploadedFiles.addAll(uploadedFiles);
//allUploadedFiles is form variable and initialized in the form constructor.
if(!allUploadedFiles.isEmpty()) then

def List<forms::Image> thumbnails := collect(allUploadedFiles, { f:File ->
def forms::Image image := new forms::Image(new FileResource(f));
image.setWidth("100px");
image.setHeight("100px");
image}

);
def VerticalLayout thumbnailRoot := new VerticalLayout();
thumbnailRoot.addComponents(thumbnails);
mydropzone.setContent(thumbnailRoot);

else
notify("Failed upload", "Upload of the file failed.", NotificationType.Warning, null, 1000, null, null)

end;
}

Upload result listener that displays thumbnails all uploaded files: The batch is added to a vertical layout, called
allImagesUploaded, that is out of the drop zone.

{
uploadedFiles:List<File>, errorMessage:List<String> ->
if(!uploadedFiles.isEmpty()) then

~
def List<forms::Image> fileImagesForAllUploadedImages := collect(uploadedFiles, { f:File ->

def forms::Image image := new forms::Image(new FileResource(f));
image.setWidth("100px");
image.setHeight("100px");
image}

);
allImagesUploaded.addComponents(fileImagesForAllUploadedImages);

~
else

notify("Failed upload", "Upload of the file failed.", NotificationType.Warning, null, 1000, null, null)
end;

}

8.1.2.2.7 Split Panels

Split panels hold 2 child components and render a draggable split bar between them so that the space is divided
into 2 areas.

You can use the Vertical Split Panel or Horizontal Split Panel: insert the component into your form and then insert
the first and the second component: the split will be rendered between the two automatically.



74 Reference

Expression that returns a Horizontal Split Panel

def HorizontalSplitPanel hsp := new HorizontalSplitPanel();
hsp.setFirstComponent(new Label("First Label"));
hsp.setSecondComponent(new Label("Second Label"));
hsp

Expression that returns a Vertical Split Panel

def VerticalSplitPanel vsp := new VerticalSplitPanel();
vsp.setFirstComponent(new Label("First Label"));
vsp.setSecondComponent(new Label("Second Label"));
vsp

You can set the position of the split with the setSplitPosition() method: mySplitPanel.setSplit←↩

Position(75, SizeUnit.Percentage) results in the split at 3/4 of the Split Panel area relative to the
first component. If you want to use the second component instead, call the method with the additional true
parameter: mySplitPanel.setSplitPosition(75, SizeUnit.Percentage, true). To the po-
sition of the split, call its isLocked() method.

To set the range within which the user can drag the split, use the setMinSplitPosition() method and
setMaxSplitPosition() moethods.

//Split Panel with restricted split range:
c.setMinSplitPosition(10, SizeUnit.Percentage);
c.setMaxSplitPosition(40, SizeUnit.Percentage);

To perform an action when the position of the split is changed, call the setSplitPositionChanged←↩

Listener({SplitPositionChanged:void}) method.



8.2 Input Components 75

8.2 Input Components

Input components serve to acquire input from the user. When the user enters an input, the component automatically
validates the value: if it is not valid, for example, a Decimal Field does not contain a valid number, the field is marked
as invalid and no further processing takes place. If the value is valid, the system updates the binding value.

8.2.1 Common Properties and Functionalities

• Binding: the relevant value and target slot; for a Text Field, binding represents the displayed and stored value;
for Tree Table this is the currently selected node, etc.

• Required: if checked, the component is marked with the ∗ symbol to indicate that the user must enter a value
into the component; no validation logic is provided.

• Immediate: if the changes on the components are to be produced immediately or on focus change

• Validation: you can add validation rules for the input values with the addValidator() call

8.2.2 Input Components Reference

Input components hold a value and allow the user to enter a value: when this happens, the components executes
the action defined by its value change listener. The input values are stored in the target object defined by their
binding.

8.2.2.1 Text Components

Text components, that is, Text Field, Text Area and Password Field, allow the user to enter free-text input with the
following additional options:

• restriction of the number of characters using the setMaxLength() methods The user will not be able to enter
an input longer than the set limit.

c.setMaxLength(20)

• display a hint in the component before the user enters their input using the setHint() method

c.setHint("Enter your notes here.");

• automatically expand the area vertically to wrap the input text with the setExpandable(true) method
call



76 Reference

8.2.2.1.1 Text Field (forms::TextField)

The Text Field component ( ) is rendered as a single-line text field that allows entering text input.

Important: The caption of the Text Field is rendered by the parent layout component. Hence if you
create a form with a sole Text Field component, the form will be rendered without its caption text. This
is due to limits of the Vaadin framework.

Figure 8.24 Form with a Text Field

Expression that returns a TextField:

textField := new forms::TextField("Text Field Caption", new forms::ReferenceBinding(&varString));
textField.setValue("Binding value in the reference string object");
textField.setMaxLength(10);
textField



8.2 Input Components 77

Figure 8.25 Text Field rendered in the default theme

8.2.2.1.2 Text Area (forms::TextArea)

The Text Area component ( ) is rendered as a multi-line free-text field.

If you want to set the height, that is, the number of lines in the text area:

• If the Text Area is expandable (by default), use setMaxRows() and setMinRows().

• If the Text Area is not expandable, use the setRows(Integer rows) method.

Figure 8.26 Form with a Text Area

Important: The caption of the Text Field is rendered by the parent layout component. Hence if you
create a form with a sole Text Area component, the form will be rendered without its caption text. This
is due to limits of the Vaadin framework.

Expression that returns a Text Area



78 Reference

myTextArea.setHeight("4")

Figure 8.27 Text area rendered

8.2.2.1.3 Rich Text Area (forms::RichTextArea)

The Rich Text Area component ( ) enables the user to enter formatted text. You can also set the area to hold a
formatted text from your form: use HTML formatting:

MyRichText.setValue("i <b> am <font color=""blue""> <i>rich </i> </font> </b> <font color=""blue""> <u>text</u> </font>")



8.2 Input Components 79

8.2.2.1.4 Password Field (forms::PasswordField)

The Password Field component ( ) is a single-line text field that hides the input.

When implementing password fields the component only prevents the displaying of the input. To secure the provided
data, make sure the form uses the HTTPS protocol.

Figure 8.28 Form with a Password Field

Important: The caption of the Password Field is rendered by the parent layout component. Hence if
you create a form with a sole Password Field component, the form will be rendered without its caption
text. This is due to limits of the Vaadin framework.



80 Reference

Expression that returns a Password Field

def PasswordField p := new PasswordField("Password:", &password);
p.focus();
p.isRequired();
p

Figure 8.29 Password Fields rendered

8.2.2.2 Decimal Field (forms::DecimalField)

The Decimal Field component ( ) is rendered as a single-line field that allows the user to enter a decimal
value. The format of the decimal value is by default set to user's locale: You can refine the allowed format with the
setNumberFormat method.

Important: The caption of the field is rendered by the parent layout component. Hence if you create a
form with a sole Text Field component, the form will be rendered without its caption text. This is due to
limits of the Vaadin framework.



8.2 Input Components 81

Figure 8.30 Form with a Decimal Field

Expression that returns a DecimalField

new forms::DecimalField("Value", &varValue);

Figure 8.31 Decimal Field rendered in the default theme

Figure 8.32 Decimal Field with an invalid value



82 Reference

8.2.2.2.1 Defining Decimal Format

To define the format of the decimal value in a Decimal Field, use setNumberFormat():

def forms::DecimalField df := new forms::DecimalField("Value", &value);
df.setNumberFormat("#,##0.00;(#,##0.00)");
df.setOnChangeListener({

changeevent ->
def Integer rounded := roundUp((df.getValue() as Decimal));
value := rounded;
df.setValue(rounded)

}
);

8.2.2.3 Date Field (forms::DateField)

The Date Field component ( ) is rendered as a single-line text field that allows entering a Date input either
using the calendar picker or entering a date in one of the allowed date formats.

Figure 8.33 Form with a Text Field

Expression defining the properties of a text field:

def Date meetingTime := now();
def DateField myDateField := new DateField("Meeting", &meetingTime);
myDateField.setDateFormat("yyyy.MM.dd’ at ’HH:mm:ss z");
myDateField.addValidator ({dateValue ->

if
(dateValue as Date) > date(2016, 3, 3)



8.2 Input Components 83

then
null

else
"The meeting must occur later than March 3, 2016."

end
});

myDateField

Figure 8.34 Date field with the default date format and with the date picker expanded

8.2.2.3.1 Defining Allowed Date Format on a Date Field

To define the format of the date in the Date Field, use the setDateFormat() to set a single supported
date format or setDateFormats methods to support multiple date formats: the format parameter is de-
fined as a String with the possible values of the java SimpleDateFormat (refer to http://docs.oracle.←↩

com/javase/6/docs/api/java/text/SimpleDateFormat.html).

To use the default application format for a date, set the format to date to use the application's dateFormat or to
dateTimeFormat to use the default date-and-time format via the LspsAppConnector.getApplicationMessage().

8.2.2.4 Check Box (forms::CheckBox)

The Check Box component ( ) is a simple check box with Boolean Binding: its caption renders next to the check
box.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html


84 Reference

Figure 8.35 Form with a Check Box

Expression that returns a CheckBox

new forms::CheckBox("I agree", &varAgree)

Figure 8.36 Check Box rendered in the default theme

The Check Box component produces the ValueChangeEvent when its check box is selected or unselected: to
handle such a change, add a Change Listener to the component.

Example Change Listener on a Check Box component



8.2 Input Components 85

confirmationCheck.setOnChangeListener(
{ e ->

if confirmationCheck.getValue() = true
then c.setEnabled(true)

end
}

)

8.2.2.5 Select Components

The Select components provide the user options which they can select and include such component as combo box,
radio button list, etc.

8.2.2.5.1 Removing the No-Value Option in Select Components

By default, the select components contain an option with no value the user can select: to disable this no-value
option, call setNullSelectionAllowed(false) on the component.

8.2.2.5.2 Setting the Select Options

You can define the options available in a select component either in the Properties view or with the component
methods:

• The options defined in the Options property of the component are loaded when the form is loaded.

– Map: map of values and labels; for example, map(findAll(Region), { region:Region
-> region.name })

– Objects: collection of objects

The labels are calculated by calling the toString() function over the objects, for
example,findAll(Region)‘.

– Select items: collection of options defined as SelectItem objects; for example,

collect(findAll(Region),
{ r:Region -> new SelectItem(value -> r, label -> r.name)}
)

• The options set with the setOptionsDataSouce() or setOptions() method load the options from
anywhere in the form and you are hence not restricted to the moment when the component is created. The
options are then lazy-loaded: they are being loaded as you display them.

Setting options on a Select component with method calls

//various calls that set the options in a combo box:
myCombo.setOptionsDataSource(new TypeDataSource(User), new PropertyPathValueProvider(User.name));
myCombo.setOptions(allValues, new IdentityValueProvider(String));
myCombo.setOptions({ 1, 2, 3 })

Important: If you set options of a component in both ways, that is, using the Options property and the
setOptionsDataSouce() or setOptions() call, the latter takes precedence: when troubleshooting
an incorrect option set, right-click the form, select Display Widget Expression, and examine the code
for loaded options.



86 Reference

8.2.2.5.3 Combo Components

8.2.2.5.3.1 Combo Box (forms::ComboBox)

The Combo Box component ( ) renders as a single-line text field with a drop-down list of options: The user can
select one option in the drop-down menu.

Options can be defined as a Map or a Collection, or an OptionsDataSource. To define an action when the user
selects or unselects an option, use the setOnChangeListener() method.

8.2.2.5.3.2 Search Combo Box (forms::SearchComboBox)

The Search Combo Box component ( ) renders as a single-line text field with a drop-down list of options: The
user can select one option in the drop-down menu and the options are filtered out as the user enters a value.

The value of the filter is passed as a SubstringFilter to the data source: if you are using your custom data source,
make sure that the data source processes the filter value correctly.

//Example getData() method of a custom data source (record implements forms::DataSource):
public List<Object> getData(Integer startIndex*, Integer count*, Collection<forms::Filter> filters, Set<Sort> sortSpecs){

if filters.isEmpty() then
getAll(startIndex, count)

else
//value in the filter:
def String currentFilter := cast(filters[0], SubstringFilter).value;
getMyDataFromMyDS(currentFilter)

end
}

Options can be defined as a Map or a Collection, or an OptionsDataSource. To define an action when the user
selects an option, use the setOnChangeListener() method.

In addition, you can set the following:

• the minimum number of characters for the search filter to apply with the setMinimalFilterLength()
method

• the number of options displayed in the drop-down with the setPageLength() method

• the time to wait after user input before searching for applicable options with the setFilterTimeout()
method



8.2 Input Components 87

8.2.2.5.3.3 Support for Entering a Custom Value

To allow the user to enter a value that is not available in the options in a combo box component, use the setNew←↩

ItemHandler() method.

c.setNewItemHandler(
{
newValue:String ->
newValue

}
)

Note that the closure has void as return value, the user will not be able to enter a custom value:

c.setNewItemHandler(
{
newValue:String ->
//The closure returns void so the user will be able to enter only one the option values:
debugLog({ -> "User entered a new value: " + newValue}, INFO_LEVEL);

}
)

If you enable this feature on a combo component, typically you will need to add the new option to the options of
the combo component: use the setOptions() method to implement this behavior. Also, if you working with
options that are persisted while new options are not persisted, consider defining the ValueProvider parameter←↩

: ValueProvider defines how to display the options and that possibly including your new option. For example, you
could handle a new option as follows:



88 Reference

c.setNewItemHandler(
{
newValue:String ->
options := add(options, new SelectItem(label -> newValue, value -> newValue));
c.setOptions(options);
//the value returned when you request value of the combo component:
newValue

}
);

To modify the added options, you can preprocess the options in the setOptions() method with a value provider:

c.setNewItemHandler(
{
newValue:String ->
options := add(options, new SelectItem(label -> newValue, value -> newValue));
c.setOptions(options, new ClosureValueProvider({ newOption:String -> newOption}));
//the value returned when you request value of the combo component:
newValue

}
);

8.2.2.5.4 Multi-Select Combo Box (forms::MultiSelectComboBox)

The Multi-Select Combo Box component ( ) renders as a single-line text field with a drop-down list of options.
The user can select multiple options in the drop-down menu.

Options can be defined as a Map or a Collection, or an OptionsDataSource. To define an action when the user
selects or unselects a combo box option, use the setOnChangeListener() method.



8.2 Input Components 89

8.2.2.5.5 Single-Select List (forms::SingleSelectList)

The Single-Select List component ( ) displays a list of options from which the user can select one option. You
can set a limit to the number of displayed options using setRowCount(Integer): if more options are available that the
set limit, the list of options becomes scrollable.

To define the action performed when select or unselect of an item, use the setOnChangeListener() method.

Figure 8.37 Single Select List with an option selected

Example expression that returns a single select list

def String selectedValue;
def SingleSelectList singleSelect := new SingleSelectList("My Single Select", &selectedValue);
singleSelect.setOptions([ "value" -> "displayed key", "another value" -> "another displayed value" ]);
singleSelect.setOnChangeListener( {_ -> myText.setValue(singleSelect.getValue())});
singleSelect.setRowsCount(2);
singleSelect.setNullSelectionAllowed(false);
singleSelect;

8.2.2.5.6 Multi-Select List (forms::MultiSelectList)

The Multi-Select List component ( ) displays a list of options from which the user can select multiple options.

It can define the number of displayed Options using setRow(Integer): if more options are available that the set limit,
the list of options becomes scrollable.

To define an action when the user selects or unselects an item, use the setOnChangeListener() method.

Example expression that returns a multi select list

def MultiSelectList msl:= new MultiSelectList("", &selectedItems);
msl.setOptions([ "value1" -> "displayed option 1", "value2" -> "displayed option 2"]);
msl.setOnChangeListener( { _-> selection.refresh() });
msl.setNullSelectionAllowed(false);
msl.setRows(2);
msl;



90 Reference

8.2.2.5.7 Check Box List (forms::CheckBoxList)

The Check Box List ( ) component is a form component that displays a list of options with check boxes and allows
the user to select multiple options using the check boxes. To define an action when the user selects or unselects an
option in the list, use the setOnChangeListener() method.

Example expression that returns a check box list

def CheckBoxList cbl:= new CheckBoxList("", &selectedItems);
cbl.setOptions([ "value1" -> "displayed option 1", "value2" -> "displayed option 2"]);
cbl.setOnChangeListener( { _-> selection.refresh() });
cbl.setNullSelectionAllowed(true);
cbl;

8.2.2.5.8 Radio Button List (forms::RadioButtonList)

The Radio Button List component ( ) is a form component that displays a list of options and allows the user to
select exactly one option by clicking a radio button. To define an action when the user selects or unselects an option
in the list, use the setOnChangeListener() method.

Example expression that returns a radio button list

def RadioButtonList rbl:= new RadioButtonList("");
rbl.setOptions([ "value1" -> "displayed option 1", "value2" -> "displayed option 2"]);
rbl.setBinding(&selectedItem);
rbl.setOnChangeListener( { _-> select.refresh() });
rbl.setNullSelectionAllowed(true);
rbl;



8.2 Input Components 91

8.2.2.5.9 Token Field (forms::TokenField)

The Token Field component ( ) serves for selection of multiple options. It is rendered as a combo box by default
with the options displayed based on users input in its drop-down box: the component searches for the options
with labels that contain the entered characters. The user then selects the option by clicking the proposed option
or entering the entire values and hitting Enter. They can remove the selected option by clicking the X icon in the
option. Whenever the user selects or removes an option, the component fires a ValueChangeEvent.

The component is rendered by default as a combo box, so the user can click the arrow on the combo box
to display the options. However, you can render the Token Field as a Text Field by calling its addStyle←↩

Name("tokentextfield") method.

By default, selected Tokens are no longer proposed in the drop-down menu. You can deactivate and activate this
behavior with the setExcludeSelectedTokens(Boolean excludeSelectedTokens) method and
check the current setting with the isExcludeSelectedTokens() method.

Example expression that returns a token field

def TokenField tf:= new TokenField("");
tf.setOptions([ "value1" -> "displayed option 1", "value2" -> "displayed option 2"]);
tf.setBinding(&selectedItems);
tf.setOnChangeListener( { _-> select.refresh() });
tf;



92 Reference

8.2.2.6 Tree (forms::Tree)

The Tree ( ) component serves as a picker of one item from an expandable tree hierarchy.

The tree hierarchy is defined by the data source and what is displayed as node labels for the tree objects is defined
by the caption provider.

• Data source can be of the following types:

– ClosureTreeDataSource: the input object of the closure is the clicked node and it returns a list of objects
that represent the data source;
Example ClosureTreeDataSource:

new ClosureTreeDataSource(
{ node:Object ->

def List<Object> result;
if node == null then
result := getAllApplicants();

else
if (node.getType() == Applicant and (node as Applicant).address != null) then
result := [(node as Applicant).address];

else
result := [];

end;
end;

result;
}

)

– SimpleTwoLevelTreeDS: two-level tree
Example SimpleTwoLevelTreeDS data source:

def SimpleTwoLevelTreeDS tree := new SimpleTwoLevelTreeDS(
[ "eva" -> ["climbing", "painting"], "juraj" -> ["reposing", "windsurfing"] ]

)

The tree identifies the node based on designated IDs. Therefore an object can appear multiple times in
a tree. The select(<VALUE>) call on the tree, selects the first occurrence of the object.

• Caption provider can be of the following types:

– IdentityValueProvider: the current row

– ConstantValueProvider: node labels are constant values

new ConstantValueProvider("Constant node label")

– ClosureValueProvider: closure that returns the labels for every node type including null value

new ClosureValueProvider(
{ x:Object ->
if typeOf(x) == type(Applicant) then

(x as Applicant).name + (x as Applicant).surname;
else
if x != null then
(x as Address).country;

else
null

end
end

}
)



8.2 Input Components 93

Where the selected value is stored is defined by the Binding property. To set and get the selected value programat-
ically, use the setValue() and getValue() methods.

Setting a selected node in a Tree component

//Data source:
//def SimpleTwoLevelTreeDS tree := new SimpleTwoLevelTreeDS(
// [ "eva" -> [climbVar, "painting"], "juraj" -> [ "windsurfing"] ]
// )
//setting climbVar as the selected value in the tree:
c.setValue(climbVar);

8.2.2.7 Upload (forms::Upload)

The Upload component allows the user to upload a file to the server. It renders as an input field for a file path
and a Browse and upload button.

Since file upload is an asynchronous process, on runtime, the component produces an ActionEvent when the upload
button is clicked and a FileUploadEvent when the uploading finishes.

Example expression that returns an Upload component

def Upload up := new Upload();
//only presets the file type in the Browse popup:
up.setAcceptedMimeTypes("text/plain");
up.setUploadResultListener(

{ f:File, m:String ->
if f==null then
uploadOutcomeMessage.setValue("upload failed")
else

uploadedFile := f;
uploadOutcomeMessage.setValue("upload success");

end
}

);
up

8.2.2.8 Slider (forms::Slider)

The Slider component serves to take a single input value of type Decimal from a value range. It is rendered as
a bar with movable handle, with the bar representing the range and the handle the input value.

The bar range is set with the setMin() and setMax() methods. If unset, minimum is set to 0 and maximum to
100. Use getMin() and getMax() to get the set values.

The number of decimal places that the value is set to is set with the setDecimalPlaces() method.

The slider can be rendered horizontally or vertically: set the orientation with the setOrientation() method;
for example, c.setOrientation(Orientation.Vertical)

Example expression that returns a Slider component

def Slider sl := new Slider("Value Select");
sl.setBinding(&decVar);
sl.setMin(0);
sl.setMax(10);
sl.setDecimalPlaces(2);
sl.setOrientation(Orientation.Vertical);
sl.setOnChangeListener( { _->select.refresh()});
sl



94 Reference

8.3 Output Components

Output components serve to display data defined by their binding properties:

• Label

• Tabular Components

• Charts

• Other Output Components

8.3.1 Label

The Label component ( ) displays read-only text of arbitrary length.

To define how the label content is rendered, call the setContentMode() method with the ContentMode enumeration
literal. The literal can be set to:

• HTML renders HTML code

• preformatted preserves newlines

• or plain text.

Important: When using the HTML content mode make sure no injection and XSS vulnerabilities can
be exploited.

Figure 8.38 Form with a Label



8.3 Output Components 95

Figure 8.39 Form with Labels above rendered

Expression that returns a Label

def Label l := new Label();
l.setBinding(new ClosureBinding({->"The current <b>time</b> is " + now()}));
l.setContentMode(ContentMode.Html);
l.setCaption("Clock");
l;

Note: When defining closure binding in the Properties view, define only the body of the closure as the
property value.



96 Reference

8.3.2 Tabular Components

Tabular components, that is, Table, Grid, Tree Table, display sets of data in a repeated regular pattern: the data is
provided a data source object, an object with data items. The data items are used by component items of the data
source component, for example, rows, as their sources of data.

Data items are loaded lazily to allow reasonable performance when working with large data sets.

8.3.2.1 Table

The Table ( ) component displays the data of the data source in a Table with every data item in a single row.

Note that Table columns can contain other components: while this option provides a high level of flexibility, Tables
with many components in their columns might perform poorly. If you are displaying a lot of data in a Table, consider
using Grid.

Tables support sorting and filtering out-of-the-box.



8.3 Output Components 97

8.3.2.1.1 Designing a Table

To design a Table, do the following:

1. Insert Table into your Form.

2. Define the data-source type and the expression that returns it below:

• Type: shared Record

• Query: query call

• Collection: items of the Collection

The Collection is calculated only when the form is initialized: the data source remains unchanged on
refresh: To reload the data, use the setDataSource() method on the component.

Note: When applying filtering and sorting on large collections, sorting and filtering actions
might cause performance issues: consider using other data sources such as shared Type
data sources or queries.

• Custom: custom data source which realizes the forms::DataSource interface.

When creating a custom data source that realizes the DataSource interface, you will need to imple-
ment the following methods:

– getCount returns the number of displayed entries; note that you need to take the filters applied
on the data into account. The filters are passed as input arguments.

– getData returns the data for the table; note that you will need to filter, sort, and page data;

The ID of the filters in individual columns is set in the FilterConfig: new FilterConfig(filterId
-> "nameColumnFilter")

– supportFilter called when the user enter the filter value;

– supportsSort called when the user sorts the sort value;

3. Insert the Table Column component ( ) into Table and define its properties:

(a) Select the type of the value provider and its value: it returns the content of the cell based on the object
of the row (Identity will serve the unchanged data object).

(b) Set the iterator type to the type of the value provider:

The iterator type must be always identical with the type of the Value Provider object: the user needs to
set the iterator type explicitly since it is not always possible to infer the type of Value Provider object (for
example, if the Value Provider is defined by a closure).

(c) Insert the form components into Table Column and define their properties.

(d) Insert components into the column: they will use the table iterator (it by default) to work with the iterated
object).

4. Insert further columns and define their properties.

8.3.2.1.2 Creating a Table Column

To create a column in your Table, do the following:

1. Insert the Table Column component ( ) into Table.

2. Select the type of the value provider, which will prepare the data item (Identity will serve the unchanged data
object).

../pds/Queries.html


98 Reference

3. Set the iterator type to the type of the value provider:

The iterator type must be always identical with the type of the Value Provider object: the user needs to set the
iterator type explicitly since it is not always possible to infer the type of Value Provider object (for example, if
the Value Provider is defined by a closure).

4. Insert the form components into Table Column and define their properties.

5. Insert components into the column: they will use the table iterator (it by default) to work with the iterated
object).

Alternatively, you can add a column programatically with the addColumn() method of Table. This allows you to
add columns dynamically on runtime, for example, on button click.

{e -> Vocab.addColumn(
new forms::TableColumn(

data -> null,
modelingId -> null,
filtrable -> false,
generator -> null,
sortable -> false,
valueProvider -> new PropertyPathValueProvider(Unit.svk))

)
}

8.3.2.1.2.1 Collapsing a Table Column

Columns of tabular components can be collapsed from the front-end by the user as well as programatically. You can
also enable or disable the feature.

By default, Columns can be collapsed:

• To disable collapsibility of a Column, call the setCollapsible(false) method on the Column.

• To collapse or uncollapse a collapsible Column, call the setCollapsed(Boolean) method on the Col-
umn.

8.3.2.1.2.2 Reordering Table Columns

To allow drag-and-drop of table columns, use the setColumnReorderingAllowed(true) table call.

8.3.2.1.3 Sorting a Table

Sorting is defined per Table Column: the data is sorted depending on which column the user calls the sorting. To
enable it, do the following:

1. Open the column properties and select the Sorting tab.

2. Select the sortable flag on the Sorting tab.

3. If you do not want to use the column provider for sorting, define the sorting value provider below.

Important: When applying sorting on large collections (the Data Source is set to Collection), sorting
actions might cause performance issues: consider using other data sources such as shared Type data
sources.



8.3 Output Components 99

8.3.2.1.4 Filtering a Table

Table filtering is defined per Table Column: the data is filtered depending on which column the user enters the filter.
Note that only filtering of Boolean, String, Integer, Decimal, Date, or Enumeration values is supported by the table
filter.

Important: Filters on Columns of Tables support only the Boolean, String, Integer, Decimal, Date, and
Enumeration data types.

To enable filtering on a Table Column, do the following in the Properties view of Table Column:

1. On the Detail tab, define the iterator data type at the bottom of the Properties view to the type returned by the
value provider.

2. On the Filtering tab, define the following:

(a) Select the Filterable option.

(b) Define Filter value provider so it returns the data for the filter:

• None: the column value provider is used
Make sure that the provider expression on the Detail tab is set to return the same data type as the
iterator data type.

Figure 8.40 Setting of column value provider for None Filter value provider

• Property path: the property path to the property of the table object, for example, Patient.←↩

diagnosis.code.
• Closure: a closure that returns the value the filter receives, for example, { p:Patient ->
p.reports.size()} will add an integer filter for the number of reports of the Patients in the
table.

• Identity: the identity passed from the row
Make sure to enter the type of the identity below, such as, String, Integer, Decimal, Date, etc.

Figure 8.41 Identity filter setting



100 Reference

• Custom: custom implementation of ValueProvider

(c) Optionally define the filter configuration: The configuration allows you to further specify the filter
properties: You can set it also with the setFilterConfig() method. Also if you are designing
a table with a custom Data Source, it will allow you to identify the filters with set values
using the filter id.

• OptionsFilterConfig: the user will be able to select one or multiple OptionsFilterConfig from an
option set, which will be interpreted as the values and applied by the filter.
new OptionsFilterConfig(multiselect -> true, options -> [
new SelectItem(label -> "label of 1", value -> 1),
new SelectItem(label -> "label of 2", value -> 2)

])

• NumericFilterConfig: the user will define a number range
// numeric filter with default values:

new NumericFilterConfig(equal ->50, moreThan -> 10, lessThan -> 90)

• DateFilterConfig so the user can define a date range to use for filtering and the format of selected
dates
new DateFilterConfig(
resolution -> uicommon::DateTimeResolution.Month, formatPattern -> "YYYY MMMM"

)

• RexExpFilterConfig to define the default regex pattern for filtering
• SubStringFilterConfig to define the default substring pattern for filtering
• BooleanFilterConfig to define properties of filter for Boolean values

3. Make sure the table is filterable: the flag is set with the setFilteringEnabled(true) method and is
enabled by default.

Important: When applying filtering on large Collections (the Data Source is set to Collection), sort-
ing and filtering actions might cause performance issues: consider using other data sources such as
shared Type data sources.

../tutorials/gridtableovercustomds.html


8.3 Output Components 101

8.3.2.1.4.1 Enabling and Disabling Filtering on Tables

To enable or disable filtering on Tables dynamically, use the setFilteringEnabled(Boolean) call on the
component: The method hides or displays the filtering row.

8.3.2.1.5 Selecting Table Rows

To enable row selection on a Table, Grid, or Tree Table, set the table as selectable: MyTable.isSelectable()
or MyTable.setSelectable(true). You can then use the setSelectionChangeListener() to
listen for user Selection and acquire the selected row with use the getSelection() method.

c.setSelectable(true);
c.setSelectionChangeListener({ e -> selected := c.getSelection().toString(); SelectedLabel.refresh()})

You can use the select() method to select a row programatically.

Example table-row select that selects the user who was created first in the table

myUserTable.select(
myUserTable.getDataSource().getData(

startIndex -> 0,
count -> 0,
filters -> null,
sortSpecs -> {new Sort(User.created, false)}).getFirst()

);

8.3.2.1.6 Setting Batch Load Size of Table Data

To define the size of the data batch of a table, use the setPageLength() method: the data is loaded in these
batches as you scroll down the table.

c.setPageLength(3)

If Table height is not set or is set to wrap, it adopt the page length height.

If you want to always adapt the height of Table to its content, you can query the data source of Table for its size, for
example:

c.setPageLength(c.getDataSource().getCount([]))

Figure 8.42 Grid with a scroll (the height is set to 3 rows and the data source returns 15 row objects



102 Reference

8.3.2.1.7 Setting No-Data Message

To set the message that is displayed in Table when it is empty, call the setNoDataMessage(<String>)
method.

8.3.2.1.8 Setting CSS Style on Table Rows

To add a style to table rows, call the setRowStyleGenerator() method on your table: the method had a
closure input parameter with the row object as its input and the CSS class that is added to the row /

element as its return value.

Note that the css class is automatically prefixed with v-table-row- unlike in grid where the class name is
passed as is.

//"label" will become "v-table-row-":
c.setRowStyleGenerator({a:Applicant -> "label"});

To remove the previously added styles, set the closure to return null, for example, table.setRowStyle←↩

Generator({a:Applicant -> null});.

8.3.2.1.9 Defining Content Align on a Table Column

To define horizontal alignment in Table Columns, call the setAlignment() method on the column.

8.3.2.2 Grid

The Grid component displays single-line text data in a tabular layout and enables editing of the persistent data and
row selection.

The data is lazy-loaded, which prevents potential performance issues when the grid is loaded.

Unlike in Tables, the content of cells does not result in any further components, so if you plan on using complex
content, such as images, charts, multiple items per cell etc. consider using Table.

8.3.2.2.1 Designing a Grid

To create a Grid with your content, do the following:

1. Insert the Grid component into your Form.

2. Define the data-source type and the expression that returns the data source object below:

• Type: shared Record

• Query: query call

• Collection: items of the Collection

The Collection is calculated only when the form is initialized: the data source remains unchanged on
refresh: To reload the data, use the setDataSource() method on the component.

Note: When applying filtering and sorting on large collections, sorting and filtering actions
might cause performance issues: consider using other data sources such as shared Type
data sources or queries.

../pds/Queries.html


8.3 Output Components 103

• Custom: custom data source which realizes the forms::DataSource interface.

When creating a custom data source that realizes the DataSource interface, you will need to imple-
ment the following methods:

– getCount returns the number of displayed entries; note that you need to take the filters applied
on the data into account. The filters are passed as input arguments.

– getData returns the data for the grid;
Note that you will need to filter, sort, and page data. The ID of the filters in individual columns
is set in the FilterConfig: c.setFilterConfig(new FilterConfig(filterId ->
"nameColumnFilter"))

– supportFilter called when the user enter the filter value;

– supportsSort called when the user sorts the sort value;

3. Insert Grid Column components and define their properties ( ) into the Grid. You can insert grid columns
dynamically with the addColumn() method.

8.3.2.2.2 Creating a Grid Column

To create a column in your Grid, do the following:

1. Insert the Grid Column component ( ) into the Grid.

2. Select the type of the value provider, which will prepare the data item (Identity will serve the unchanged data
object).

3. Define the renderer (determines how the value from the value provider is rendered):

• None renders the value as returned by the toString() call.



104 Reference

• HTML renders a String value as HTML.

• Number renders the value in the format defined below.
Define the format as a String following the DecimalFormat Java formatting rules, for
example, "0000.00000"

• Date renders the value in the format defined below.
Define the format as a String following the SimpleDateFormat Java formatting rules in
the text area below, for example, "EEE, d MMM yyyy HH:mm:ss" results in formatting Wed, 7
Sep 2016 14:33:00

• Enumeration renders an Enumeration value as a String.

• Button renders the value as a Button.
The click action is defined as a closure with the value-provider object as its input parameter below.

{ clickRowObject:String ->
varString := "The user clicked: " + clickRowObject.toString();
MyEditableGrid.refresh()}

• Link renders the value as a Link
The click action is defined as a closure with the Value Provider object as its input parameter below.

{ clickRowObject:String ->
varString := "The user clicked: " + clickRowObject.toString();
MyEditableGrid.refresh()}

• Theme image considers the value to be the path to a Vaadin ThemeResource image and renders the
image. The value provider must return a String with the path to the image. The path is relative to current
Vaadin theme directory, for example, myapp-war/VAADIN/themes/lsps-blue", so the String path could
be "favicon.png". The on-click action is defined as a closure with the Value Provider object as its input
parameter below.

• External image considers the value to be the URL to an image and renders the image. The Value
Provider must return a String with the URL to the image. For example, external image renderer could
be used if for a Closure Value Provider set to {a:Applicant -> "www.acme.com/images/"
+ a.pictureName}.

• Custom uses a custom renderer that implements the forms::Renderer interface (For further instructions,
refer to the developer documentation.

Figure 8.43 Theme image renderer

https://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
../custom-application/creatingformscomponent.html#customrendere


8.3 Output Components 105

8.3.2.2.2.1 Creating a Grid Column Dynamically

To add a column dynamically on runtime, for example, when the user clicks a button, call the addColumn()
method on the parent component.

{e -> Vocab.addColumn(
new forms::TableColumn(

data -> null,
modelingId -> null,
filtrable -> false,
generator -> null,
sortable -> false,
valueProvider -> new PropertyPathValueProvider(Unit.svk))

)
}

8.3.2.2.2.2 Hiding a Grid Column

You can hide columns of tabular components can be collapsed from the front-end by the user as well as programat-
ically. You can also enable or disable the feature.

By default, Columns can be displayed:

• To disable hiding of a Column, call the setHiddable(false) method on the Column.

• To hide and show a Grid Column, call the setHidden() method on the Column.

8.3.2.2.3 Sorting a Grid

Sorting is defined per Grid Column. To enable it, do the following:

1. Open the column properties and select the Detail tab.

2. Select the sortable flag.

Important: When applying sorting on large collections (the Data Source is set to Collection), sorting
actions might cause performance issues: consider using other data sources such as shared Type data
sources.

Figure 8.44 Filterable and sortable Grid Column



106 Reference

8.3.2.2.4 Filtering a Grid

Important: Filters on Columns of Grids support only the Boolean, String, Integer, Decimal, Date, and
Enumeration data types.

To enable filtering on a Grid column, do the following:

1. Make sure the Grid is filterable: the flag is set with the setFilteringEnabled(true) method and is
enabled by default.

2. On the respective column, set the filtering properties:

(a) On the Detail tab, select the Filterable flag.

(b) Optionally specify the filter properties with the setFilterConfig() method.

• OptionsFilterConfig: the user will be able to select one or multiple OptionsFilterConfig from an
option set, which will be interpreted as the values and applied by the filter.

def SelectItem adv := new SelectItem(label -> "Advanced", value -> Level.ADVANCED);
def SelectItem int := new SelectItem(label -> "Intermediate", value -> Level.INTERMEDIATE);
def SelectItem beg := new SelectItem(label -> "Beginner", value -> Level.BEGINNER);
~
c.setFilterConfig(

new OptionsFilterConfig(
multiselect -> true,
options -> [

adv, int, beg
],
selected -> [adv, int]
)

)

• NumericFilterConfig: the user will define a number range

// numeric filter with default values:
new NumericFilterConfig(equal ->50, moreThan -> 10, lessThan -> 90)

• DateFilterConfig so the user can define a date range to use for filtering and the format of selected
dates

new DateFilterConfig(
resolution -> uicommon::DateTimeResolution.Month, formatPattern -> "YYYY MMMM"

)

• RexExpFilterConfig to define the default regex pattern for filtering

• SubStringFilterConfig to define the default substring pattern for filtering

• BooleanFilterConfig to define properties of filter for Boolean values

Also if you are designing a filterable grid with a custom data source, the filter properties (its
id) will allow you to identify the filters with set values using the filter id.

../tutorials/gridtableovercustomds.html


8.3 Output Components 107

Important: When applying filtering on large Collections (the Data Source is set to Collection), sort-
ing and filtering actions might cause performance issues: consider using other data sources such as
shared Type data sources.

Figure 8.45 Filterable and sortable Grid Column



108 Reference

8.3.2.2.4.1 Enabling and Disabling Filtering on a Grid

To enable or disable filtering on Grid, use the setFilterable(Boolean) call on the component: The method
hides or displays the filtering row.

8.3.2.2.5 Editing a Grid Column

Important: When enabling editing of Grid data, make sure to consider the following:

• Since Collections are immutable, you can enable editing only on a Grid with shared Records and
Grid Columns with the Value Provider set to Property path.

• If the underlying associated shared Record Property returns null, the cell will remain empty and
read-only.

To enable editing of shared Record Properties in a Grid, do the following:

1. Open the Properties view of the Grid component:

(a) Select the Editor enabled flag.

(b) To save the changes only when the user clicks the Save button in the edited row, select the Editor
buffered flag. If the Editor buffered is not selected, the changes are applied to the underlying Record
instantly (on every change).

2. Enable editing on the Grid Column:

(a) Open the properties of your Grid Column.

(b) Select the Editable flag.

(c) In the Editor field, define which editor should be used on the Value Provider object:

• leave empty for Strings

• NumberEditor: the user will be able only to provide a number (Decimal or Integer)

• DateEditor: the user will be able to insert only a date with the option to use a date picker

• EnumerationEditor: the user will be able to select one of the Enumeration value from a drop-down
box



8.3 Output Components 109

Figure 8.46 Editable Column with a date value

8.3.2.2.6 Enabling Row Selection in a Grid

To allow the user to select grid row and perform an action on row selection, do the following:

1. Make the Grid selectable using the setSelectable(true) call.

2. Set the selection mode with the setSelectionMode(SelectionMode) call:

• SelectionMode.NONE: selection disabled

• SelectionMode.SINGLE: single-row selection on click

• SelectionMode.MULTI: selection of multiple items using checkboxes in individual rows
In the MULTI mode, the user can select multiple rows directly under each other by clicking the selection
checkbox of the first row, holding the click, and dragging the mouse across the rows below.

3. To handle a selection, call the setSelectionChangeListener() method on the Grid component: its
closure parameter defines how to handle the selection.

4. To select a Grid row, call the select() method.

//on the Init tab of Properties view:
//enable selection:
c.setSelectable(true);
//set selection mode:
c.setSelectionMode(SelectionMode.MULTI);
//select rows with first two items from the datasource:



110 Reference

c.select(c.getDataSource().getData(0, 2, null, null));
~
//you can also select a particular item in a Collection
//datasource (in SINGLE selection mode):
//c.select(mycollection[0]);
~
//display selected items in an output component:
c.setSelectionChangeListener(

{
v:forms::ValueChangeEvent ->

//set the content of an output component to the selected row:
labelComponent.setValue(

c.getSelection().toString());
}

);

8.3.2.2.6.1 Enabling Selection of Multiple Rows in a Grid

To enable the Select All option on a Grid, set the Grid as selectable in MULTI selection mode and display the Select
All checkbox:

c.setSelectable(true);
c.setSelectionMode(SelectionMode.MULTI);
c.setSelectAllCheckBoxVisible(true);

8.3.2.2.7 Setting Grid Height

By default, the Grid defines a fixed minimum height. You can change the height using the setHeightByRows(),
setHeightFull(), or setHeightWrap() method.

c.setHeightByRows(3)

If the grid displays more row objects, the Grid height follows the height setting and a scrollbar is added:

Figure 8.47 Grid with a scroll (the height is set to 3 rows and the data source returns 15 row objects

If you want to always adapt the height of the Grid to its content, query the data source its size and adapt the height
accordingly, for example:

c.setHeightByRows(c.getDataSource().getCount([]))



8.3 Output Components 111

8.3.2.2.8 Setting CSS Style on Grid Rows

To add a style to grid rows, call the setRowStyleGenerator() method on your grid: the method has a closure
parameter with the row object as its input and the CSS class that is added to the row /

element.

c.setRowStyleGenerator({a:Applicant -> "v-label"});

To remove the previously added styles, set the closure to return null, for example, grid.setRowStyle←↩

Generator({a:Applicant -> null});.

8.3.2.2.9 Defining Content Align on a Grid Column

To define horizontal alignment in Grid Columns, call the setAlignment() method on the column.

8.3.2.3 Tree Table

The Tree Table component allows you to display data in an expandable tree hierarchy. The nodes in the tree are
identified by a special ID; Hence, one item can appear in multiple nodes of a tree.

8.3.2.3.1 Designing a Tree Table

To design a Tree Table in your form, do the following:

1. Insert the Tree Table component into the form.

2. In the Tree Table properties, define the data source of one of the following type:

• ClosureTreeDataSource: the input object of the closure is the clicked node and it returns a list of
objects that represent the data source;

Example ClosureTreeDataSource



112 Reference

new ClosureTreeDataSource(
{
node ->
//returns the list of root nodes on load (object stored in the home variable):
if node == null then
[home]

else
//what to return when the user clicks a node:
//if the user clicked a Folder, return the list of its files and folders:
if node.getType() == Folder then
(node as Folder).items;

//if the user clicked a file, do not return anything:
else
[];

end;
end;

}
)

• SimpleTwoLevelTreeDS: two-level tree
Example SimpleTwoLevelTreeDS data source:

def SimpleTwoLevelTreeDS tree := new SimpleTwoLevelTreeDS(
[ "eva" -> ["climbing", "painting"], "juraj" -> ["reposing", "windsurfing"] ]

)

3. Insert Table Column components ( ) into the Table.

The column operates over the Data Source objects, so that on every column you can define what of the object
is displayed.

4. Define the properties of each column:

(a) Define the Value Provider that returns the content of the cell based on the row object.

(b) Define the iterator type: the type is the type of the Value Provider
The iterator type is always the same as the type of the Value Provider object: since it is not possible to
infer the type of Value Provider object without possible inaccuracies (for example, if the Value Provider
is defined by a closure), the user always needs to set the iterator type explicitly.



8.3 Output Components 113

5. Insert the form components into the Table Column and define their properties. Use the Table iterator (it by
default) to work with the iterated object).

8.3.2.3.1.1 Enabling and Disabling Filtering on a Tree Table

To enable or disable filtering on Tree Tables, use the setFilteringEnabled(Boolean) call on the
component: The method hides or displays the filtering row.

8.3.2.3.2 Defining a Tree Table with Different Node Types

To create a Tree Table with nodes that are of different data types, do the following:

1. Insert a Tree Table component into your Form definition.

2. Define the data source as a SimpleTwoLevelTreeDS or ClosureTreeDataSource.

Check the type of the clicked node: typically you will cast the node to its type to be able to return the list of its
child nodes. Note that on load, no node has been clicked yet, so the input object is null: make sure to handle
this situation in the closure.

3. Insert the Table Column into the Tree Table and define the Value Provider type and the value provider expres-
sion below.

Make sure that the Value Provider returns values of simple data types: Objects of another type cause a
runtime exception since it is not possible to produce their filter and sort feature.

• Closure Value Provider expression:

{
clickedNode:FSItem ->
clickedNode.name;

}

• Property Path Value Provider expression:

FSItem.name

8.3.2.3.3 Getting the Selected Item in a Tree Table

To allow the user to select an item in a tree table and obtain the selection, do the following:

1. Enable row selection on the tree table with the setSelectable() method:

MyTreeTable.setSelectable(true)

2. Define the action when the user selects a row with the setSelectionChangeListener() method.

MyTreeTable.setSelectionChangeListener( {e:forms::ValueChangeEvent ->
//set the value in the selected row as caption of a Label:
Selection.setCaption(

toString(
//e.source returns the TreeTable; getSelection the selected object:
(e.source as forms::TreeTable).getSelection())

)
}

)



114 Reference

8.3.2.3.4 Sorting a Tree Table

To enable sorting on a Grid or Table, select the sortable flag in the Sorting properties of the respective column: the
user will be able to sort the displayed values by clicking the column header.

On a Table, if you do not want to use the column provider for sorting, define the sorting value provider below.

Important: When applying sorting on large collections (the Data Source of the Grid or Table is set to
Collection), sorting and filtering actions might cause performance issues: consider using other data
sources such as shared Type data sources.

Figure 8.48 Filterable and sortable Grid Column

8.3.2.3.5 Filtering a Tree Table

Important: Filters on Columns of Tables and Tree Tables support only the Boolean, String, Integer,
Decimal, Date, and Enumeration data types.

To enable filtering on a column of a Table, Tree Table, and Grid, do the following:

1. Make sure the table, tree table, or grid is filterable: the flag is set with the setFilteringEnabledmethod
and is enabled by default.

2. On the column, set the properties:

(a) Select the filterable flag.

(b) Define the iterator data type at the bottom of the Properties view so the system can infer the filter it
should use (Boolean, String, Integer, Decimal, Date, or Enumeration.

(c) Make sure the Value Provider expression is set to return the same data type as the iterator data type.

(d) Optionally define the filter configuration: The configuration allows you to further specify the filter
properties: You can set it with the setFilterConfig() method.



8.3 Output Components 115

• OptionsFilterConfig: the user will be able to select one or multiple OptionsFilterConfig from an
option set, which will be interpreted as the values and applied by the filter.

new OptionsFilterConfig(multiselect -> true, options -> [
new SelectItem(label -> "label of 1", value -> 1),
new SelectItem(label -> "label of 2", value -> 2)

])

• NumericFilterConfig: the user will define a number range

// numeric filter with default values:
new NumericFilterConfig(equal ->50, moreThan -> 10, lessThan -> 90)

• DateFilterConfig so the user can define a date range to use for filtering and the format of selected
dates

new DateFilterConfig(
resolution -> uicommon::DateTimeResolution.Month, formatPattern -> "YYYY MMMM"

)

• RexExpFilterConfig to define the default regex pattern for filtering

• SubStringFilterConfig to define the default substring pattern for filtering

• BooleanFilterConfig to define properties of filter for Boolean values

Important: When applying filtering on large Collections (the Data Source is set to Collection), sort-
ing and filtering actions might cause performance issues: consider using other data sources such as
shared Type data sources.



116 Reference

Figure 8.49 Filterable and sortable Grid Column

8.3.2.3.6 Enabling and Disabling Filtering

To enable or disable filtering on Tables and Tree Tables dynamically, use the setFilteringEnabled(←↩

Boolean) call on the component: The method hides or displays the filtering row.

8.3.2.3.7 Selecting Tree Table Row

To enable row selection on a Tree Table, set the tree table as selectable: MyTable.isSelectable() or My←↩

Table.setSelectable(true). You can then use the setSelectionChangeListener() to listen for
user Selection and acquire the selected row with use the getSelection() method.

You can use the select() method to select a row from the Form.

c.setSelectable(true);
c.setSelectionChangeListener({ e -> selected := c.getSelection().toString(); SelectedLabel.refresh()})

8.3.2.3.8 Adding Column Dynamically

To add a Grid Column, Table Column, or a Tree Table Column to the parent component Dynamically, for example,
on button click, call the addColumn() method on the parent component.

Adding a column on button click (Click Listener):

{e -> Vocab.addColumn(
new forms::TableColumn(

data -> null,
modelingId -> null,
filtrable -> false,
generator -> null,
sortable -> false,
valueProvider -> new PropertyPathValueProvider(Unit.svk))

)
}



8.3 Output Components 117

8.3.2.3.9 Selecting Tree Table Rows

To enable row selection on a Tree Table set it as selectable: MyTreeTable.isSelectable() or MyTree←↩

Table.setSelectable(true). You can then use the setSelectionChangeListener() to listen for
user Selection and acquire the selected row with use the getSelection() method.

You can use the select() method to select a row from the Form.

c.setSelectable(true);
c.setSelectionChangeListener({ e -> selected := c.getSelection().toString(); SelectedLabel.refresh()})

8.3.2.3.10 Collapsing Columns

Columns of tabular components can be collapsed from the front-end by the user as well as programatically. You can
also enable or disable the feature.

By default, Columns can be collapsed:

• To disable collapsibility of a Column, call the following method:

– The setCollapsible(false) method on the Column of a Tree Table or Table.

• To collapse or uncollapse a collapsible Column, call the following method:

– The setCollapsed(Boolean) method on the Column of a Tree Table or Table.

8.3.3 Charts

Important: Chart components are based on Vaadin Charts, which are developed by a third party.
Before designing your charts, make sure to obtain the respective licenses for Vaadin Charts.

Chart components render data as defined by their plotting options; hence you need to define these:

• The data is defined as data series or data values depending on the chart.

• Plotting is defined in the plotting options of each the chart or data series.

8.3.3.1 Generic Chart Features

All charts can be redrawn on request and trigger an action, when the user clicks a data point in the chart.

8.3.3.1.1 Redrawing Charts

To redraw a chart, call the refresh() method on the chart.

https://vaadin.com/elements/browse#charts


118 Reference

8.3.3.1.2 Performing Actions on Chart Click

To handle a click on a chart item, define the onPointClick property of the chart with its setter method set←↩

OnPointClick(). The property is a closure with the ChartPointClickEvent produced by the click as its input
parameter.

Typically, you will define the action on the Init tab of the component so the clicks are processed from the moment
the chart is displayed.

myChart.setOnPointClick(
{
click:ChartPointClickEvent ->

clickedSeries.setCaption(click.series)
}

);

If you need to pass further data about the data item, define payload on the data series items: The payload is
passed as the payload property of the ChartPointClickEvent.

[
new ListDataSeries(
[

new ListDataSeriesItem( 1 , "This is some payload."),
new ListDataSeriesItem( 5 , "This is also some payload.")

]
)

]

Figure 8.50 Item payload sent to a popup and displayed on click

8.3.3.2 Pie Chart

The Pie Chart component is plotted as a pie chart; its data is defined in a list of PieSliceSeries. Each
PieSliceSeries is plotted as its own pie with a set of PieSlices with the data. The pies are stack on each other in the
order they are arranged in the data set. Mind that in such cases you will like need to adjust the plotting of the data
series in order to make the pies visible.



8.3 Output Components 119

8.3.3.2.1 Creating a Pie Chart

To create a pie chart, do the following:

1. Insert the pie chart component into your form.

2. Define the pie data series:

• either in the Pie slice series field of the Properties view

• or using the addPieSliceSeries() method on a pie chart
Data for a pie chart with a single series

def PieSliceSeries mySeries := new PieSliceSeries("My only series", [
new forms::PieSlice("Big slice", 50, "Business data", new Color("#162955")),
new forms::PieSlice("Middle slice", 30, "Business data", new Color("#4F628E")),
new forms::PieSlice("Small slice", 20, "Business data", new Color("#7887ab"))

]);
[ mySeries ]

8.3.3.2.2 Adding a Pie Data Series on Action

To add a data series when the user or the system performs some action, run the addPieSliceSeries()
method on the chart from the appropriate location, such as, Click Listener of a button.

{ e -> myAlreadyRenderedPeiChart.addPieSliceSeries(myPieSliceSeries)}



120 Reference

8.3.3.2.3 Plotting Pie Slice Series

To define how individual pie slice series are presented, define their plotting options as a PlotOptionsPie object and
assign it to the series.

In the PlotOptionsPie object, you can define the following properties:

• innerSize: distance of the inner border from the center (size of the "hole" in the donut chart)

You can define it either in percent relative to the pie size or in pixels as Integer value.

• dataLabels: formatting of slice labels

• startAngle: rotation of the chart series (angle where the first slice starts)

0 is the top; 90 is right;

• size: perimeter of the chart series

You can define it either in percent relative to the plot area or in pixels as Integer value.

• shadow: shadow behind the chart series

• center: position of the chart center relative to left-upper corner of the component slot

• endAngle: degree that marks the end of the chart

0 is the top; 90 is right; null and the default value result in startAngle + 360.

• showInLegend: whether the slices are included in the chart legend

def PlotOptionsPie mySeriesPlotting := new PlotOptionsPie(
//inner border is at 40% of the perimeter size:
innerSize -> new AttributeSize("40%"),
//rotation:
startAngle -> 90,
//chart series size:
size -> new AttributeSize(350),
shadow -> true,
borderWidth -> 5,
//position of the series:
center -> new AttributeCenter(0, 0),
endAngle -> 180,
showInLegend -> true);

mySeries.plotOptions := mySeriesPlotting;



8.3 Output Components 121

8.3.3.2.4 Formatting Pie Slice Labels

To define formatting of data labels on data series of Pie Charts, define the dataLabels property on the pie data
series as a PieDataLabels object.

Formatting expression can access the following variables:

• percentage: percentage the slice takes

• point: pie slice object

• series: pie series object

• total: total of the series

• formatter: label template

• format: label template that overrides formatter

From format, the variables are available on point object, for example {point.percentage}.

dataLabels -> new PieDataLabels(
//javascript code used as label:
formatter -> "’Percentage: ’ + this.percentage +
’<br>Point name: ’+ this.point.name +
’<br>Series: ’ + this.series.name +
’<br>Total: ’ + this.total +
’<br>x: ’ + this.x ",
//formatter -> "’this.x’",



122 Reference

//rotation in degrees counterclockwise:
rotation -> 45,
format -> "Name: {point.name} Percentage: {point.percentage} Y: {point.y}",
enabled -> true,
color -> new Color(8, 8, 8),
//Distance of the data label from the slice edge; can be also negative:
distance -> 150)

8.3.3.3 Cartesian Chart

Cartesian Charts serve to plot data as line, bar, area, or bubble charts.

The charts can plot multiple data sets, called data series, with different plotting. Data series are groups of related
data that represent one graph.

When creating a data series, pick the data series type depending on the data values:

• ListDataSeries: a sole decimal value

• DecimalDataSeries: a decimal and, a range or another decimal values

• CategoryDataSeries: a category, and ranges or sole decimal values

• TimeDataSeries: a point in time, and a sole decimal value or range

The data in a series is defined as a list of data-series items. Each type of data series can work only with data items
of the respective type: CategoryDataSeries can contain only CategoryDataSeriesItems; DecimalDataSeries can
contain only DecimalDataSeriesItems; ListDataSeries can contain only ListDataSeriesItems.

The data series items can hold ranges or values where applicable:

• ListDataSeriesItems: a sole decimal value, for example, new ListDataSeriesItem(0.21); the
value is the y value and x is the index of the item in the list.

• CategoryDataSeriesItems:

– a decimal value with an optional name; for example, new CategoryDataSeriesItem("←↩

Greenland", 56196)

– or a range of values with an optional name; for example, new CategoryDataSeriesItem("←↩

Greenland", 56196, 56239).

• DecimalDataSeriesItems :

– decimals with the x and y coordinates, for example, new DecimalDataSeriesItem(2, 5)

– or a range of decimal values; for example,new DecimalDataSeriesItem(7, 3, 8)

• TimeDataSeriesItems:

– date with a value, for example, new TimeDataSeriesItem(now() + seconds(1), 7)

– or a range and a date; for example,new TimeDataSeriesItem(now(), 1, 3)

Each data series defines its plotting options; hence, each data series can be plotted differently from the others:
override the plot options if you want to change the plotting.

Example data series

new CategoryDataSeries (
[
new CategoryDataSeriesItem("Greenland", 56196, 56239),
new CategoryDataSeriesItem("China", 1388232693, 194202093),
new CategoryDataSeriesItem("India", 1342512706, 1358354355),
new CategoryDataSeriesItem("USA", 326474013, 328857273)

]
);



8.3 Output Components 123

8.3.3.3.1 Adding a Cartesian Data Series on Action

To add a data series when the user or the system performs some action, run the addDataSeries() method on
the chart from the appropriate location, such as, Click Listener of a button.

{ e -> myRenderedChart.addDataSeries(myCatesianSeries)}

8.3.3.3.2 Adding a Data Series Item on Action

To add a data series item to a data series when the user or the system performs some action, run the addItem()
method on the data series from the appropriate location, such as, Click Listener of a button.

{ e -> myAlreadyRenderedDataSeries.addItem(new ListDataSeriesItem(5, "This is new item with value 5."))}

8.3.3.3.3 Changing the Current Data Series

To use another data series in a Cartesian chart, call the setDataSeries() method on the chart.

8.3.3.3.4 Changing Plotting of a Cartesian Chart Series

Each type of data series has default plotting which depends on the data in their items. Note that data series items
can define their default plot options:

• ListDataSeriesItem: PlotOptionsLine

• CategoryDataSeriesItem: PlotOptionsColumn

• DecimalDataSeriesItem and TimeDataSeries: with range (low and high) PlotOptionsLineArea; with values
PlotOptionsLine

If you are not happy with the default plotting, you can adjust plotting of individual series, by setting the plot←↩

Options property of the data series.

Note that some plotting options apply only to some types of data series item: for example, if you are working with
series items that have decimals values only, it is not possible to use the Bubble plotting since this plotting requires
a range to define the size of the Bubble marker.

You can plot the series items as the following:

• PlotOptionsColumn: bar chart plotting

It applies to items with a single value and CategoryDataSeriesItems with a range.

• PlotOptionsBubble: bubble chart plotting (requires range data series items; items with values are
ignored)

It applies to items with ranges.

• PlotOptionsScatter: scatter chart plotting (requires value data series items; items with ranges are
ignored)

It applies to items with values.

• PlotOptionsLine: line chart plotting

It applies to items with values.

• PlotOptionsLineArea: line-area chart plotting (area below the line is filled)

It applies to items with values.

Defining plotOptions property of a data series

myDataSeries.plotOptions := new PlotOptionsLineArea(spline -> true, range -> true)



124 Reference

8.3.3.3.4.1 Changing Plotting of Point Markers on Scatter, Line and Line Area Charts

To change the plotting of point markers on Scatter, Line and Line Area Charts, set the marker property of the plot
options:

//changing marker plotting:
myDataSeries.plotOptions := new PlotOptionsScatter(marker -> Marker.diamond);
//"smoothing" out the graph line:
itemListDataSeries.plotOptions := new PlotOptionsLine(spline -> true);
//setting graph line color:
itemListDataSeries.plotOptions.color := new Color(0,0,0);
//to interrupt the flow of the graph, set the item where to interrupt to null:
def ListDataSeries dataSeries := new ListDataSeries([1, 2, 3, 2, null, 4, 6]);
//to stack bars of a bar chart on the y axis behind each other,
//set the plotOptions.stacked to true:
def forms::PlotOptionsColumn plotOptionsColumn := new forms::PlotOptionsColumn();
plotOptionsColumn.stacked := true;:

8.3.3.3.5 Polar Chart

Since Polar chart is a special case of the Cartesian chart, the uses the same types of data series just like in the
Cartesian Chart and has the same plotting options.

8.3.3.3.5.1 Creating a Polar Chart

To create a polar chart, insert the component to your form and define its data series. Any other required properties
will use their default values.

8.3.3.4 Gauge Chart

The Gauge Chart component has a single decimal as its value.

To define an action to double-clicking the point, set the onPointClick field of the Gauge Chart with the setter
method:

c.setOnPointClick({ e:ChartPointClickEvent -> doSomething()})

8.3.3.4.1 Creating a Gauge Chart

To create a gauge chart, do the following:

1. Insert the gauge chart component into your form.

2. Define the Properties:

• Value: where the needle should point

• Value name: value description displayed when hovering over the needle

• Y Axis: axis

Note that ticks have by default 0 length and are hence not displayed.

Example axis definition



8.3 Output Components 125

new Axis(
min -> 0,
max -> 100,

~
tickLength -> 0,
tickInterval -> 5,
tickWidth -> 2,
tickColor -> new Color(0, 100, 100, 1),

~
plotBands -> [
new forms::PlotBand(from -> 180, to -> 240, color -> new Color(255, 51, 102, 0.8)),
new forms::PlotBand(from -> 130, to -> 180, color -> new Color(255, 255, 102, 1))

]
);

To remove the ticks, set gridLineWidth to 0.

8.3.3.5 Axes

Axes are rendered in some default way for each type of data series in your chart

8.3.3.5.1 Changing Axis Range

To change the range of the chart axis, set its min and max properties.

//new axis with its maximum and minimum set:
new Axis(
min -> 0,
max -> 240)



126 Reference

8.3.3.5.2 Axis Values

By default, both the axes display decimals as their values: This is intuitive for the y axis: after all, we are visualizing
numbers, but might not be the required values for your x axis.

Note that the following values are used on the x axis by default:

• for ListDataSeriesItem and CategoryDataSeriesItem, the index of the item in the List

• for DateDataSeriesItem, the date in epoch milliseconds

• for DecimalDataSeriesItem, the date in epoch milliseconds

These properties can be overridden in the axis properties or with the addXAxis() or addYAxis() method of
the chart.

8.3.3.5.2.1 Changing Axis Values

If you want to change the values on an axis, define a new axis in the axis properties or with the addXAxis() or
addYAxis() method of the chart.

new Axis(’type’ -> AxisType.category, categories -> ["My first name", null, "My third name"])

If you want to change only the value types on the axis, it is enough to change the AxisType. For example, if
you want to display Date object as dates on the axis, define a new axis of the datetime type: ‘new Axis('type' ->
AxisType.datetime)‘.

8.3.3.5.2.2 Creating Multiple Axis

You can add multiple axes to you chart with the addXAxis() or addYAxis() method: by default such axes are
rendered next to each other. You might want to render one of the Axis on the opposite side of the chart: to do so,
set its opposite property to true.

def forms::Axis yAxisTemperature := new forms::Axis();
yAxisTemperature.labels := new forms::ChartLabels(format -> "{value} °C");
yAxisTemperature.title := "Temperature";
yAxisTemperature.max := 20;
yAxisTemperature.min := -55;
chart.addYAxis(yAxisTemperature);
~
def forms::Axis yAxisPressure := new forms::Axis();
yAxisPressure.labels := new forms::ChartLabels(format -> "{value} kPa");
yAxisPressure.opposite := true;
yAxisPressure.title := "Pressure";
yAxisPressure.max := 102;
yAxisPressure.min := 20;
chart.addYAxis(yAxisPressure);

8.3.4 Other Output Components

8.3.4.1 Repeater

The Repeater component serves to display the same component repeatedly over a set of data defined by Repeater's
data source. Note that unlike Tables, TreeTables, and Grids, Repeaters do not load their data source objects lazily.



8.3 Output Components 127

8.3.4.1.1 Defining a Repeater

To create a Repeater with your content, do the following:

1. Insert the Repeater component into your Form.

2. In the Properties view of the Repeater, define its properties:

(a) Select the Vertical option to display the repeated content vertically: leave blank to display the compo-
nents horizontally.

(b) Define the data source:

• Type: all instances of the shared Record

• Collection: items of the Collection

Note: When applying filtering and sorting on large collections, sorting and filtering actions
might cause performance issues: consider using other data sources such as shared Type
data sources.

• Custom: custom data source which realizes the forms::DataSource interface.

(c) If applicable, change the data type of the iterator in the Type field next to the iterator name.

3. Insert form components into the Repeater form: use the iterator name to work with the current data-source
object.

8.3.4.2 Browser Frame

The Browser Frame renders as a view with the URL content. The target URL is defined in the URL property as a
String, for example "http://www.whitestein.com".

To URL is loaded when the frame is initialized; to refresh the Browser Frame, call its setURL() method.



128 Reference

8.3.4.3 Image

The Image ( ) component is renders an image, which is define as a DownloadableResource object,
that is either ThemeResource which defines a file from the current CSS schema; FileResource with a file
uploaded with your modules; or ExternalResource with an external URL.

Note that the component does not check the type of the resource.

8.3.4.3.1 Displaying an Image

To display an image in your form, do the following:

1. Insert the Image ( ) component into your Form.

2. In the Properties view, define the icon source in the resource expression or with the setSource() method.

Note that the component does not check the type of the source. If you serve it a source of an incorrect type, it might
result in a runtime exception or the content might not be displayed.

Expression that adds an Image component to a Vertical Layout

def Image image := new forms::Image();
image.setSource(new FileResource({ -> getResource("image", "resource/picture.jpg")}));
~
myVerticalLayout.addComponent(image);



8.3 Output Components 129

8.3.4.4 Download

The Download ( ) component is rendered as a link or button, which downloads a resource when clicked. The
resource can be a file uploaded with your modules, an external URL resource, or a file from the current application
schema.

Downloads define the following type of data sources:

• ExternalResource: resource accessed via a URL

• FileResource: resource that holds a File object

• ThemeResource: resource from the current CSS theme

8.3.4.4.1 Defining a Download Button or Link

To create a Button or Link that starts a file download when clicked, do the following:

1. Insert the Download ( ) component into your Form.

2. In the Properties view, define the resource expression.

3. In the Style property, define whether the component should be rendered as a link or as a button.

Expression that returns a Download component

new Download(
"Download",
new FileResource({ ->
getResource("form_components", "output/myfile.txt")

}),
DownloadStyle.Link)



130 Reference

Figure 8.51 Form with a Download component

8.3.4.5 Calendar

The Calendar component serves to display and manage event data. The calendar API required that the event
data be wrapped in CalendarItems.

Calendar can be rendered in the month, week, and day mode.

Calendar entries are defined as a list of CalendarItems returned by the calendar item provider, that can be either a
ClosureCalendarItemProvider or a ListCalendarItemProvider.

new ClosureCalendarItemProvider(
{ from, to ->
collect(

//get data of event that occur within the displayed period:
select(

tripEvents,
{e:TripEvent ->

e.startDate <= to || e.endDate >= from
}

),
//Create CalendarItems over the data:
{e:TripEvent ->

new forms::CalendarItem(
allDay -> true,



8.3 Output Components 131

data -> e,
endDate -> e.endDate,
caption -> e.description,
startDate -> e.startDate)

}
)

}
)

In the component, you can handle the following events:

• creating a new calendar item: the CreateEvent is thrown when the user clicks on a day field or drags the
mouse pointer over multiple fields

TripCalendar.setCreateListener (
{ x:forms::CalendarCreateEvent ->

//display popup for event creating (event is created on button click
//in the popup and added to the business data):
createPopup(x.from, x.to).show();
TripCalendar.refresh()

}
);

• editing a calendar item: the EditEvent is thrown when the user clicks an event text

TripCalendar.setEditListener({
x:forms::CalendarEditEvent -> createPopup().show();
TripCalendar.refresh()

});

• rescheduling a calendar item: the RescheduleEvent is thrown when the user drag-and-drops an existing item

TripCalendar.setRescheduleListener({
x:forms::CalendarRescheduleEvent ->
def TripEvent te := x.data as TripEvent;
te.startDate := x.from;
te.endDate := x.to;
TripCalendar.refresh();

});

8.3.4.6 Map Display

The Map Display component renders as an OpenStreetMap with the defined center location, zoom, and one
or multiple markers. You can work with map markers with the maps methods addMarker(), removeMarker(), on←↩

MarkerClick(), and onMarkerDrag().

Note: To work with the client GPS coordinates, use the Forms.detectLocation() method.

Map Properties

• Center: coordinates of the center of the rendered map

• Zoom level: default zoom on initialization and refresh defined as an Integer with value 0-18 (0 being the
lowest zoom with the entire Earth displayed)

• On click: closure executed when the map is clicked



132 Reference

8.3.4.7 PDF Viewer

The PDF Viewer component, PDFViewer, displays a PDF defined as a FileResource.

Note: Make sure to set the width and height of the PDF Viewer component: The default width and
height are 0.



8.4 Action Components 133

On first load, the viewer might need a few seconds to load its resources.

8.4 Action Components

Action components are clickable components: on click they trigger an action:

• Button

• Action Link

• Link

8.4.1 Button

The Button ( ) component renders as a button and typically defines an action taken when the button is clicked:
On click, the ClickListener closure is executed.



134 Reference

Figure 8.52 Form with a Button

Expression that returns a Button:

new forms::Button("Submit",
{ submitClick -> Forms.submit();
Forms.navigateTo(new DocumentNavigation(documentType -> MyForm()))})



8.4 Action Components 135

Figure 8.53 Button rendered in the default theme

8.4.2 Action Link

The Action Link component ( ) is a link that performs an action when clicked (it is a Button rendered as a link).

Action Link defined as an expression

new ActionLink(
"caption from constructor",
{ e -> Forms.navigateTo(new UrlNavigation(openNewTab -> true, url -> "https://www.whitestein.com"))}

)

Figure 8.54 Action Links rendered



136 Reference

8.4.3 Link

A Link component ( ) serves to navigate away from the page on click: it is rendered as <a> with the href
attribute.

The advantage of a Link over an Action Link is that you can open a target location in a new tab or window. Also you
can calculate the navigation link lazily in the Click Listener expression.

The component defines the following:

• Navigation: an expression that returns the target location as a Navigation object, for example, Document←↩

Navigation, TodoNavigation, UrlNavigation, etc.

new UrlNavigation(url -> "www.whitestein.com")

Note: To create a link that will download a resource, use the Download component.

8.4.3.1 Opening a Link Resource in a New Window or Tab

To open the target location in a new tab or window, set the OpensNewWindow on the Link component to true by
calling the setOpensNewWindow(true) method.

Figure 8.55 A Link component that opens a new tab or window



8.5 Special Components 137

8.5 Special Components

8.5.1 Expression Component

The Expression component allows the user to define a form component in the Expression Language: the component
defines an expression that returns the required form component.

Note: If the expression returns a forms::Form, consider using the Reusable Form so you don't have to
issue getWidget() calls.

8.5.1.1 Creating a Form Component Programmatically

To define a component in the Expression Language, be it an entire form tree or a single particular component,
use the Expression component: insert the Expression component into the form and define the expression in the
Expression property so it returns the content that should be included in the form.

def TextField textField := new TextField("Text Field Caption", new ReferenceBinding(&varString));
~
textField.setImmediate(true);
textField.setValue("Binding value set in the reference string object.");
textField.addValidator({value:Object ->

if length(value as String) != 4 then
"The value must contain 4 characters";

end;
});
~
def Button submitButton := new Button("Submit", {e -> Forms.submit()});
~
def Button navigateButton := new Button("Navigate", {e -> Forms.navigateTo(new UrlNavigation(url -> "http://sme.sk"))});
~
new FormLayout(textField, submitButton, navigateButton);

Note that the root component of the expression tree adopts the modeling id of the Expression component; if you call
setModelingId() on the root component in the expression, the setting is ignored.

8.5.1.2 Inserting Form into a Form Component Dynamically

To insert a form content into a component, you need to get the top component of the form definition, called the
widget. You can obtain the widget with the getWidget() call of a form.

Changing the content of the documentInputLayout layout component on button click

myButton.setOnChangeListener({_ ->
myVerticalLayout.removeAllComponents();

switch myButton.getValue()
case common::DocumentType.ACCOUNT -> myVerticalLayout.addComponent(new accountForm().getWidget());
case common::DocumentType.LOAN -> myVerticalLayout.addComponent(new loanForm().getWidget());
case common::DocumentType.MORTAGE -> myVerticalLayout.addComponent(new mortageForm().getWidget());

end
});



138 Reference

8.5.2 Reusable Form Component

The Reusable Form component serves to use an already defined Form in another Form. The Form created by the
Reusable Form component is then rendered as part of the parent Form. The Form to be reused is defined by the
Expression property of the Reusable Form component.

Example of Expression property on a Reusable Form component

new myCustomForm(currentBussinessData);



Chapter 9

Form Migration

When migrating forms of the ui Module to the forms Module, consider the following:

• In migrated forms, the initialization of local variables is moved to the form constructor.

• All listeners with their properties are removed (any validation, handle, action properties are lost).

• If you are using the form in a document or a user task, the usage expressions are not migrated (they will still
use the original form)

Migration creates a backup file of all forms so you can refer to it to identify data that was not migrated.

To migrate forms from ui to forms, do the following:

1. Prefix all data types from the ui module: This will prevent name clashes with the names in the forms module:

(a) Go to Project > Migrate LSPS 3.1 Projects.

(b) In the Migration dialog, select the projects and click Next.

(c) Select Add ui:: prefix (unselect any other irrelevant options) and click Finish.

2. Import to your Modules the forms Module: In GO-BPMN Explorer, double-click Module Imports, click Add and
double-click the forms Module in the Standard Library node.

3. In GO-BPMN Explorer, right-click either the form or the Module with the forms you want to convert and select
Convert to FormComponent.

4. When converting all forms in a Module, define the names of the forms in the displayed dialog box.

9.1 Changes in Forms

Main Benefits

• No fixed event-processing lifecycle: the user specifies the behavior with actions when they see fit. Part
of the behavior, such as, Submit and Refresh, is now defined in methods of the Forms record. Component
specific actions, such as, validation, became methods of the Form components.



140 Form Migration

Note: In UI forms, form actions are defined as callback expressions: the user must be aware of
when the callbacks are used. This depends on the event-processing lifecycle and
related mechanisms, which are relatively complex.

• Simple changing of the tree component dynamically (changes of the tree on runtime) since Form compo-
nents are Records with methods (ui forms are functions)

Improvements on Components

• Grid and Table support row selection: the form can handle the row-selection event.

• Popup is now defined out of the form component tree and can be reused.

• TextField, DecimalField and DateField substitute the ui::TextBox component.

• Chart design has been improved significantly.

• Pie Chart can now be rendered as a Donut chart.

• Charts are now more flexible and dynamic: you can add data points on runtime without reloading the charts.

New Components

• Various new components, including PasswordField.

Removed Components

The approach eliminates the need for the following components:

• ui::ViewModel: the "undo/cancel" capability can be now achieved with Record Change Proxies in
more controlled and transparent manner (the proxy mechanism is a generic modeling mechanism; an exam-
ple is available in Quickstart.

• ui::Container and public-listener and registration-points mechanism: forms can define public methods to
allow access from "outside".

• ui::Conditional: substituted with the setVisible() method of components.

• ui::Geolocator: replaced by the Forms.detectLocation() method.

• ui::Message: the user can now display the messages on failed validation easily in the entire form.

Missing Features

• Inserting a new value in the Combo-Box component

• Saving of documents and to-dos

• Support of Custom components in PDS (It is still possible to implement your component and create it from
the Expression Component as a Record instance.)

../ui-vaadin/requestresponsecycle.html
../pds/recordchangeproxy.html


9.1 Changes in Forms 141

Feature forms ui

Feature forms ui
General modeling approach form behavior defined by expres-

sions and their methods
behavior defined in GUI of the
forms editor (listeners)

Properties partial support by the GUI of the
form editor; fully supported as ex-
pressions

support by the GUI of the form edi-
tor

Actions partial support by the GUI of the
form editor (if defined directly on
the form component); fully sup-
ported as expression anywhere
else

Predefined lifecycle with actions;
user defines callbacks for the life-
cycle (they must be aware of the
lifecycle mechanism, which is rela-
tively complex)

Values Given either by binding to variable,
data source or internal value of the
component.

By binding to variable.

Iterating values (collections in UI) By data providers. By iterators which are usually local
variables.



142 Form Migration


	1 Main Page
	2 Quickstart
	2.1 Prerequisites
	2.2 Form
	2.3 Using the Form in a Document
	2.4 Using the Form in a User Task

	3 Form Definition
	3.1 Creating a Form Definition
	3.2 Renaming a Form Definition
	3.3 Previewing a Form

	4 Form Design
	4.1 Defining a Parametric Constructor
	4.2 Defining a Local Form Variable
	4.3 Creating a Form Hierarchy
	4.4 Inserting a Parent Component
	4.5 Deleting a Parent Component
	4.6 Searching for Form Components
	4.7 Displaying Form Source Code
	4.8 Enabling Error Reporting on Components
	4.9 Troubleshooting a Form

	5 Actions on Forms
	5.1 Executing Logic Before and After Form Initialization
	5.2 Detecting Location
	5.3 Checking the Size of the Browser Window
	5.4 Creating Transient Data in Forms
	5.5 Saving a Document or Todo
	5.6 Submitting a To-Do or Document
	5.7 Navigating from a To-Do or Document

	6 Mobile Forms
	7 Form Components
	7.1 Binding of Components
	7.1.1 Setting Component Binding
	7.1.2 Getting Component Binding
	7.1.3 Clearing Component Binding
	7.1.4 Implementing Custom Binding
	7.1.5 Defining an Initial Value of a Component

	7.2 Validation of Components
	7.2.1 Adding a Validator
	7.2.2 Validating Record Constraints in Forms
	7.2.3 Checking Component Validity
	7.2.4 Setting a Custom Error Message
	7.2.5 Getting All Error Messages

	7.3 Actions on Components
	7.3.1 Refreshing a Component
	7.3.2 Setting the Visibility of a Form Component
	7.3.3 Setting the Caption of a Form Component
	7.3.4 Adding an Icon to Form Component
	7.3.5 Setting a Component as Read-Only
	7.3.6 Setting Component Size
	7.3.6.1 Default Component Sizes
	7.3.6.2 Setting Absolute Size
	7.3.6.3 Wrapping Content
	7.3.6.4 Filling Parent
	7.3.6.5 Setting Expand Ratio
	7.3.6.6 Setting Alignment

	7.3.7 Add Style Name to a Form Component
	7.3.8 Disabling a Component
	7.3.9 Setting a Tooltip
	7.3.10 Displaying a Notification Dialog
	7.3.11 Defining a Context Menu
	7.3.12 Handling a Right-Click Event
	7.3.13 Defining a Value Provider


	8 Reference
	8.1 Container Components
	8.1.1 Common Properties and Functionalities
	8.1.1.1 Setting Spacing and Margin
	8.1.1.2 Populating Container Components

	8.1.2 Container Component Reference
	8.1.2.1 Layout Components
	8.1.2.2 Other


	8.2 Input Components
	8.2.1 Common Properties and Functionalities
	8.2.2 Input Components Reference
	8.2.2.1 Text Components
	8.2.2.2 Decimal Field (forms::DecimalField)
	8.2.2.3 Date Field (forms::DateField)
	8.2.2.4 Check Box (forms::CheckBox)
	8.2.2.5 Select Components
	8.2.2.6 Tree (forms::Tree)
	8.2.2.7 Upload (forms::Upload)
	8.2.2.8 Slider (forms::Slider)


	8.3 Output Components
	8.3.1 Label
	8.3.2 Tabular Components
	8.3.2.1 Table
	8.3.2.2 Grid
	8.3.2.3 Tree Table

	8.3.3 Charts
	8.3.3.1 Generic Chart Features
	8.3.3.2 Pie Chart
	8.3.3.3 Cartesian Chart
	8.3.3.4 Gauge Chart
	8.3.3.5 Axes

	8.3.4 Other Output Components
	8.3.4.1 Repeater
	8.3.4.2 Browser Frame
	8.3.4.3 Image
	8.3.4.4 Download
	8.3.4.5 Calendar
	8.3.4.6 Map Display
	8.3.4.7 PDF Viewer


	8.4 Action Components
	8.4.1 Button
	8.4.2 Action Link
	8.4.3 Link
	8.4.3.1 Opening a Link Resource in a New Window or Tab


	8.5 Special Components
	8.5.1 Expression Component
	8.5.1.1 Creating a Form Component Programmatically
	8.5.1.2 Inserting Form into a Form Component Dynamically

	8.5.2 Reusable Form Component


	9 Form Migration
	9.1 Changes in Forms


