
Living Systems® Process Suite

Scaffolding Library

Living Systems Process Suite Documentation

3.2
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 Creating CRUD Components 1

1.1 Generic View . 1

1.2 Recursion Depth . 3

Chapter 1

Creating CRUD Components

To prototype CRUD components in your forms quickly, use the scaffolding framework provided by the scaffolding
module in the Scaffolding Library: it allows you to create form components that enable the front-end user to create,
read, update, and delete objects of a particular data type.

Important: The Scaffolding library resources are not optimized and hence not intended for production
environment.

The capabilities are provided by the form component GenericView. By default the component renders as a CRUD
table with object of a record type; however you can change the component definition in the component properties
to render as another component.

1.1 Generic View

The Generic View component is a custom form component that creates and renders a component, by default a
CRUD table, over instances of a particular data type.

In the default CRUD table, the columns represent the data type structure and the rows the data type instances:
For example, if you have a Record Book with the fields ISBN and title, and you use it as the data type of the
Generic View component, the rendered table will have the columns ISBN and title. If you use a Record instance,
the table will in addition contain a row with the book's ISBN and title. From the table you will be able to create a new
book instance, and delete and modify the book instances.

Before you can make use of the library, you need to import it into your Project and Module:

1. In the GO-BPMN Explorer, right-click your Project, click Add Library; in the popup select Select a built-in
library and select the Scaffolding Library in the Library drop-down box.

2. In the GO-BPMN Explorer, click the module. In the Imports tab of the Properties view, click Add. In the
pop-up, select the scaffolding module.

To create a form with the scaffolding component, do the following:

1. Create or open a form definition.

2 Creating CRUD Components

2. Insert the Generic View custom component.

Figure 1.1 Generic view in palette

3. Define the required Generic View properties:

Object Collection of Objects that are the content of the form component
Each object is represented by a table row.
For object of a simple type, their value is rendered in a sole column; for objects of a record type, the
value of each field is renderer in its own column; Note that this can be overridden by the record options
property.

Editable If true, the table is editable: if the table contains different types of objects, the table remains read-
only.

Object type If the Object expression returns an empty Collection, the table is considered to operate over
this data type, hence if the table is editable and you click Create new instance, the table creates a new
instance of this type).

Recursion Depth The relationship depth from the table record that is displayed directly in the component
of the top data type: the related data types are displayed as sub-node components. They can be
expanded directly in the parent component. Otherwise, the data is displayed on a new page and the
depth is indicated only in the breadcrumb.

Submit Button The component rendered instead of the default Submit button
Note that you can use a layout component to insert, for example, multiple buttons to where the Submit
button is located by default.

Record options Custom Record rendering
If defined, the system does not use the generic CRUD table but the form defined in this map to render
the Record whenever it appears in the Generic View.

1.2 Recursion Depth 3

[
Author -> new RecordOptions(
linkDisplayName -> {o:Object-> cast(o, Author).name},
recordCustomForm -> {o:Object -> new OutputText(content ->{->"anonymous"})}

),
Book -> new RecordOptions(
propertyVisibilityDefault -> false,
propertyOptions -> [
Book.name -> new PropertyOptions(
propertyVisibility -> true

),
Book.authors -> new PropertyOptions(
propertyVisibility -> true

)
]

)
]

1.2 Recursion Depth

When using Records as data for a Generic View component and the Record type has a Relationship to another
Record, the Record instance is rendered in its own component by default (a CRUD table by default). To display
such objects directly in the parent component, define the Recursive property on your Generic View. If the Record
instance is "within" the reach of the recursion, the component of the Record is rendered as a nested component
that can be expanded. If this is not the case, the Record instance is displayed in a pop-up dialog box after clicking
the view icon on the parent Record instance.

Figure 1.2 Document with Generic Views

The top Generic View has the Recursive depth property set to 0 while the bottom Generic View has the Recursive
depth set to 2.

Note: In the background the system always loads the data within the reach of one relationship, so that
when requested the data is already available.

4 Creating CRUD Components

	1 Creating CRUD Components
	1.1 Generic View
	1.2 Recursion Depth

