
Living Systems® Process Suite

Performance Tuning

Living Systems Process Suite Documentation

3.2
Tue Jan 12 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 Performance Tuning 1

1.1 System Performance . 1

1.2 Performance of LSPS Server . 2

1.2.1 Pre-Loading Modules . 2

1.2.2 Setting Dumping of Model Instances with Exceptions . 3

1.2.3 Decreasing Frequency of Goal-Condition Checks . 3

1.2.4 Improving Shared Record Search . 3

1.2.5 Disabling System Cache Regions . 3

1.2.6 Disabling Hibernate Statistics . 3

1.3 Performance of Processes . 4

1.4 Performance of Operations over Data . 4

1.5 Performance of UI Forms . 5

Chapter 1

Performance Tuning

1.1 System Performance

Perform general performance check:

1. Make sure you meet the hardware requirements.

2. Check if your operating system, Java, and browser are supported for your
edition.

3. Check your operating system for insufficient resources.

4. Check the JVM memory consumption with Java VisualVM or JConsole.

5. Check compatibility and performance of the application server.

6. Check availability and performance of any external services.

7. Check memory consumption of your browser.

8. Check the database settings and structure, and trace and analyze SQL queries: to display SQL statements
in the console set the following:

• On the application server

– On JBoss, enable in the profile XML (standalone-full.xml), add spy="true" to the LSPS
datasource:

<datasource jta="true" jndi-name="java:jboss/datasources/myDS" pool-name="myPool" enabled="true" use-java-context="true" spy="true" use-ccm="true">

and in <subsystem xmlns="urn:jboss:domain:logging:<VERSION>"> add

<logger category="jboss.jdbc.spy">
<level name="TRACE"/>

</logger>

• On the database

– For MS SQL, you can do so with SQL Server Profiler.

../server-deployment/index.html#hardwarerequirements
../installation/index.html
../installation/index.html
../server-deployment/index.html#softwarerequirements

2 Performance Tuning

1.2 Performance of LSPS Server

Check your LSPS performance:

1. Check integration code:

(a) Check integration to external data sources.

(b) Check the authentication and authorization systems.

2. Check the Java implementation of any custom objects.

3. Check the LSPS Server:

(a) Make sure there are not too many process and model instances communicating via signals.

(b) Make sure there are not too many active users.

(c) Check HealthCheck data of the LSPS Server for suspicious data such as:

• long model instance wait times (AverageMILockWaitTime and AverageOfLastTenMILockWait←↩

Times)
• many loops that exceed the threshold limits for engine loops (ThresholdNumberOfEngineLoops)
• other statistics provided by the HealthCheck Monitoring

(d) Check the CREATE_PROCESS_LOG server setting: recommended setting is MODULE. Further infor-
mation about the setting, is available in the Deployment guide.

1.2.1 Pre-Loading Modules

To compile modules on server restart and prevent their compiling later, you can pre-load the modules: On server
start, the server will compile the modules defined by the INITIAL_MODELS_SQL entry in the LSPS_SETTINGS
database table.

To enable and define pre-loading of modules when the server is restarted, do the following:

1. Set SQL logging level of Hibernate to ALL.

For the embedded Wildfly server, add org.hibernate.SQL.level=ALL to <LSPS_WORKSPA←↩

CE>\.LSPSEmbedded\wildfly<VERSION>\standalone\configuration\logging.←↩

properties.

2. Log in the LSPS database as administrator.

On the default H2 database, the DB URL is //localhost/h2/h2;MVCC=TRUE;LOCK_TIMEO←↩

UT=60000, the user name and password are lsps.

3. Configure which modules should be compiled on server start to prevent compilation on first-user access: In
the LSPS_SETTINGS table, add the INITIAL_MODELS_SQL key with the value set to the select statement
that returns the MODEL_ID entries you want to pre-load.

--Inserts the INITIAL_MODELS_SQL key with the select that returns the IDs
--of the most recently uploaded my-process and my-contracts modules to LSPS_SETTINGS:
INSERT INTO LSPS_SETTINGS (ID, VALUE)
VALUES (’INITIAL_MODELS_SQL’,

’select ID from LSPS_MODULES where
NAME=’’my-process’’ and
UPLOAD_DATE = (SELECT MAX(UPLOAD_DATE) from LSPS_MODULES where NAME=’’my-process’’)

union
select ID from LSPS_MODULES where

NAME=’’my-contracts’’ and
UPLOAD_DATE = (SELECT MAX(UPLOAD_DATE) from LSPS_MODULES where NAME=’’my-contracts’’)’);

../custom-application/creatingcustomobjects.html
../server-deployment/serverparams.html#lspsappmonitoring
../server-deployment/serverparams.html#createprocesslogs

1.2 Performance of LSPS Server 3

1.2.2 Setting Dumping of Model Instances with Exceptions

If a model instantiation fails with an exception (its interpretation fails), the model instance data is lost. This behavior
can cause performance issues due to too large model instances with exceptions being stored. Consider enabling
storing of the errors with the marshalled model instances in the database.

To enable the setting, perform the following insert on the LSPS database:

INSERT into LSPS_SETTINGS(ID,VALUE) values (’DUMP_MODEL_INSTANCE_ON_EXCEPTION’,’true’)

1.2.3 Decreasing Frequency of Goal-Condition Checks

If a model contains many goals with conditions, checking of the conditions might cause performance issues since
the conditions are checked whenever any of the goals changes its status or a token is moved. This happens when
the interpretation strategy is set to FULL_PARALLEL. However, the default setting is BPMN_FIRST.

You can set the checking to happen only when all transactions finish (all tokens are moved as far as possible).

To do so, issue the following insert statement on the LSPS database:

INSERT into lsps_settings (id, value) values(’INTERPRETATION_STRATEGY’,’BPMN_FIRST’)

1.2.4 Improving Shared Record Search

To improve performance of Shared Record search, define indexes on the Records and their Relationships.

1.2.5 Disabling System Cache Regions

Check the setting of cache regions in the <YOUR_APP>-ejb/src/main/resources/cache-regions.←↩

properties file of your LSPS application.

1.2.6 Disabling Hibernate Statistics

Make sure that the Hibernate statistics feature is deactivated: you can do so on the MBean tab of JConsole, the
node com.whitestein.lsps > Statistics -> Attributes > StatisticsEnabled

4 Performance Tuning

1.3 Performance of Processes

Search for expression calls with long execution time and identify the cause for the long duration.

Performance issues in processes are typically caused by the following:

• Operations over large in-memory collections

– foreach: if you are collecting results of iterations in a new collection, consider using functions of the
Standard Library, for example, collect(), fold(), exist(), forAll(), etc.

• Inefficient queries

Typically, queries or functions that call other queries perform poorly.

• Assignments in conditions of asynchronous modeling elements, such as, start conditional event, goal
precondition, etc.

These might result in an infinite loop: make sure such a situation does not occur

Also consider that the server checks for all changes on such conditions in each transaction: this can mean
that the system might perform such extensive checks on every change of a goal status for example. Also
consider the BPMN_FIRST server setting.

• Multiple intermediate events, and goals and plans that wait to be activated at the same time

• Multiple processes that communicate concurrently with signals or similar mechanisms

Avoid too frequent communication between different model instances with signals or shared data, when the
signals or data is used in conditions or filters of events. Consider moving the processes into one model, so
that the communication takes place within one model instance.

• Frequent timer checks

Consider setting the TimerInterval to a non-zero value.

• Large objects in Signals and in properties of model instances

(Model instance properties can be set, for example, when the model instance is created with the
createModelInstance(synchronous∗: Boolean, model∗: Model, properties←↩

:Map<String, Object>) function.)

1.4 Performance of Operations over Data

Search for expression calls with long execution time with Profiler.

Performance issues in obtaining persisted data are typically caused by the following:

• Record fields of complex data types

Transform record fields of complex data types to related records; complex field values must be serial-
ized and deserialized frequently.

• Unindexed shared Records

Make sure indexes are created for all shared records.

• Inefficient getting of related records

Set lazy or eager loading of related records on data relationships. Also con-
sider using data caching for shared records that are used frequently, e.g., code tables but do
not change often.

../pds/Profiling.html
../server-deployment/serverparams.html#bpmnfirst
../server-deployment/serverparams.html#timerInterval
../modeling-language/modelingelements.html#signals
../pds/Profiling.html
../pds/DataTypeModel.html#datarelationships
../pds/PersistentData.html#indexes
../pds/PersistentData.html#fetching
../pds/PersistentData.html#CacheRegions

1.5 Performance of UI Forms 5

• Inefficient getting of large data sets with standard queries

– Consider paged queries.

– Consider using fetch joins.

• Editing items of records via relationships with List multiplicity

Changes on such records are expensive since they require rebuilding of the entire entity and possibly addi-
tional SQL statements for shared Records. Therefore, if a List relationship end cannot contain the same item
twice, switch it to Set: When you change the Set value, for example, add a new item to the Set, the system
checks and updates only the particular item, while for a relationship of the List type, the entire List entry is
rebuild.

• Slow sorting of items using the sort(list∗ : List<E>, comparator∗ : {E, E :
Integer}) : List<E> function If possible, use the sortByKey() function with the parameters
which returns a list of elements sorted by the keys produced by the keyExtractor. The function takes

– the collection of objects to be sorted,

– the keyExtractor closure that retrieves the keys to use for sorting.

1.5 Performance of UI Forms

Performance issues in obtaining persisted data are typically caused by the following:

• Table with large data

– If you are using a simple table, use lazy or paged tables instead.

– Consider using of fetch joins for the queries that load table data.

– Avoid in-memory paging or ordering: use query functionality.

– Avoid in-memory filtering and sorting.

• Many components in a single form

Divide the form into multiple screens of a screen flows.

• If you are using complex logic to initialize local variables, consider moving the initializing to an Init
listener: since local variables are initialized before the form tree is assembled, the form would be displayed
sooner. However, make sure that the Init listener is then not called repeatedly in the form.

• If you want to exclude a component completely from the form hierarchy use the Expression component with an
if statement; note that the Conditional component is included in the hierarchy on initialization and initialized,
while the Expression component is set when the screen context is created as the returned expression. Note
that you cannot recalculate the content of the Expression component once it was initialized.

../pds/Queries.html#querypaging
../pds/Queries.html#fetchjoing

6 Performance Tuning

	1 Performance Tuning
	1.1 System Performance
	1.2 Performance of LSPS Server
	1.2.1 Pre-Loading Modules
	1.2.2 Setting Dumping of Model Instances with Exceptions
	1.2.3 Decreasing Frequency of Goal-Condition Checks
	1.2.4 Improving Shared Record Search
	1.2.5 Disabling System Cache Regions
	1.2.6 Disabling Hibernate Statistics

	1.3 Performance of Processes
	1.4 Performance of Operations over Data
	1.5 Performance of UI Forms

