
Living Systems® Process Suite

LSPS Tutorials

Living Systems Process Suite Documentation

3.3
Mon Nov 1 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 Main Page 1

2 Forms Tutorials 3

2.1 Chart (forms) . 3

2.1.1 Creating a Donut Chart . 3

2.1.2 Creating a Bar Chart . 5

2.1.2.1 Setting the Category as X Axis Values . 6

2.1.3 Creating an Area Chart . 7

2.1.3.1 Creating an Area Chart with Time X Axis . 7

2.1.4 Creating a Line Chart . 8

2.2 Validating a Record from a Form . 9

2.2.1 Log Process . 12

2.3 CRUD Grid . 15

2.3.1 Creating Database Data . 15

2.3.2 Creating the Form . 17

2.3.3 Adjusting Presentation . 20

2.3.4 Creating the Document . 21

2.4 Validation of Multiple Components . 21

2.5 Editing Data in a Popup with Conflict Check . 23

2.5.1 Displaying the Applicant List . 23

2.5.2 Displaying and Editing Applicant Details . 24

2.5.3 Creating a New Applicant . 27

2.6 Filter over Grid and Table with a Custom Data Source . 27

2.6.1 Implementing a Custom Data Source . 28

2.6.2 Creating the Form . 29

2.7 Icon in a forms::Grid . 30

iv CONTENTS

3 UI Forms Tutorials 33

3.1 Editable Table . 33

3.2 Table with Derived Values . 35

3.3 Calendar with Adding Entries Functionality . 37

3.4 Pop-up with Save and Cancel Buttons . 41

4 Process Tutorials 47

4.1 Restartable Processes with Start Monitoring . 47

4.1.1 Designing a Restartable Process . 48

4.2 Agile Processes . 51

4.2.1 Base . 52

4.2.2 Skipping . 54

4.2.3 Deactivation . 56

4.2.3.1 Summary . 58

4.2.4 Activation . 58

4.3 Creating a Model Instance from Document and Navigating to its To-Do on Submit 61

4.4 Monitor the Start of Model Instances . 62

4.4.1 Monitoring the Start of Model Instances . 63

4.4.2 Defining Finish of the Start Sequence . 64

4.4.3 Defining Number of Expected Model Instances . 64

4.4.4 Checking the Start Progress of Model Instances . 64

5 Data Model Tutorials 65

5.1 Creating Custom To-Do List . 65

5.1.1 Creating the Data Model . 65

5.1.2 Creating the Todo Items . 67

5.1.2.1 Creating the Form for the To-Do . 68

5.1.3 Creating a List of Todo Items . 69

5.1.4 Removing the To-Do Navigation from the Menu . 71

5.1.5 Adding the To-Do Items Navigation to the Menu . 73

5.1.6 Localizing the Name of a Menu Item . 74

5.1.7 Excluding the Todo Items Document from Documents . 74

5.2 Validating a Related Record . 75

CONTENTS v

6 Other Tutorials 77

6.1 Model Update Examples . 77

6.1.1 Updating a Variable Value . 78

6.1.2 Updating a Task Parameter . 81

6.1.3 Updating an Event Type . 87

6.1.4 Updating a Data Type . 90

6.2 Editable Decision Table . 95

7 LSPS Application on a Local Server and Database 97

7.1 Setting up Local MySQL Database . 97

7.2 Setting up Local WildFly . 98

7.3 Connecting to Local WildFly from PDS . 100

Chapter 1

Main Page

A series of complete tutorials that focus on different goals you might want to achieve in your models:

• Forms Tutorials and UI Forms Tutorials to help you create the GUI you require

• Process Tutorials with design patterns for your business processes

• Data Model Tutorials with solutions for your data models and related issues

• Other Tutorials

2 Main Page

Chapter 2

Forms Tutorials

• Chart (forms)

• Validating a Record from a Form

• CRUD Grid

• Validation of Multiple Components

• Editing Data in a Popup with Conflict Check

• Filter over Grid and Table with a Custom Data Source

• Icon in a forms::Grid

2.1 Chart (forms)

You can download an example implementation here. To import it to your workspace, go to Import > Existing
Projects into Workspace; select Select archive file and locate the charts.zip file and select ChartTutorial.

2.1.1 Creating a Donut Chart

A donut chart is a special case of the pie chart: the pie slice series have the inner size plotting property larger than
0 and a custom size. Therefore, to create a donut chart, we will start from the pie chart.

To create a donut chart, do the following:

1. Insert a pie chart component into the form.

2. Define the data series: you can do so either in the Pie slice series property in the Properties view of the Pie
Chart or using the addPieSliceSeries() method.

../media/tutorials/models/charts.zip

4 Forms Tutorials

def PieSliceSeries innerSeries := new PieSliceSeries("Inner Slice Series", [
new forms::PieSlice("Big slice", 10),
new forms::PieSlice("Small slice", 10)

]
);

def PieSliceSeries middleSeries := new PieSliceSeries("Middle Slice Series", [
new forms::PieSlice("Another small slice", 30),
new forms::PieSlice("Another small slice", 20),
new forms::PieSlice("Another big slice", 50)

]
);

def PieSliceSeries outerSeries := new PieSliceSeries("Outer Slice Series", [
new forms::PieSlice("Another small slice", 30),
new forms::PieSlice("Another small slice", 20),
new forms::PieSlice("Another big slice", 50)

]
);

//The dataseries as rendered in the order (z-index) as in the returned list
//(outerSeries is the lowest):
[outerSeries, middleSeries, innerSeries]

3. Define the required inner size and total size in the plotting options for each series.

....
def PlotOptionsPie middleSeriesPlotting := new PlotOptionsPie(
//inner border at the perimeter of the chart:
innerSize -> new AttributeSize("20%"),
size -> new AttributeSize("60%"),
startAngle -> 90, borderWidth -> 2);

~
innerSeries.plotOptions := middleSeriesPlotting;
[outerSeries, middleSeries, innerSeries]

2.1 Chart (forms) 5

2.1.2 Creating a Bar Chart

To render a data series as a bar chart, do the following:

1. Insert the Cartesian Chart component into your form.

2. Define its data series in its Properties view.

3. Set the plotOptions property of the data series to PlotOptionColumn.

myDataSeries.plotOptions := new PlotOptionsColumn(
dataLabels -> new DataLabels(formatter -> "this.y"),
color -> new Color(0, 255, 150));

Note that CategoryDataSeries are plotted as bar charts by default.

Example TimeDataSeries plotted as a bar chart

def TimeDataSeries tds := new TimeDataSeries([
new TimeDataSeriesItem(now(), 1, 3),
new TimeDataSeriesItem(now()+seconds(3), -1, 5),
new TimeDataSeriesItem(now()+seconds(5), 2, 7)]

);
tds.plotOptions := new PlotOptionsColumn(range -> true);
[tds]

6 Forms Tutorials

2.1.2.1 Setting the Category as X Axis Values

To use the category name on the x axis as values, set the x axis to an axis with category -> []. You can do
so directly in the X Axis field on the Detail tab of the Properties view or anywhere by calling the addXAxis() method
of the chart.

c.addXAxis(new Axis(categories -> []))

If you need to override some of the category names, define the names in the categories list of the chart; for ex-
ample, c.addXAxis(new Axis(categories -> ["Year 2014", null , "Year 2016"]))
overrides the category names of the first and third item.

2.1 Chart (forms) 7

2.1.3 Creating an Area Chart

To render a data series as an area chart in the Cartesian Chart, set its plot options to PlotOptionsLineArea.

def CategoryDataSeries cds := new CategoryDataSeries(
[

new CategoryDataSeriesItem("first", 1, 4),
new CategoryDataSeriesItem("second", -1, 2),
new CategoryDataSeriesItem("third", 0, 3)

]
);
cds.plotOptions := new PlotOptionsLineArea(spline -> true, range -> true);
[cds]

2.1.3.1 Creating an Area Chart with Time X Axis

To create an area chart that will have time axis, use the TimeDataSeries in the Cartesian Chart and set the type of
the x axis to AxisType.datetime.

8 Forms Tutorials

2.1.4 Creating a Line Chart

By default, ListDataSeries are rendered as line charts. If you want to plot another series type as a line chart, set its
plot options to PlotOptionsLine.

cds.plotOptions := new PlotOptionsLine(spline -> true);
[cds]

2.2 Validating a Record from a Form 9

2.2 Validating a Record from a Form

In this tutorial, you will:

• create a page that will add an entry to the database and log the event,

• validate values of a record defined as user input in a form, and

• start a process when a user performs some action on a page.

Requirements:

• Create an order based on user input.

• Make sure the user enters all data in the correct format.

• Make sure the order is persisted only after the user submits it.

1. Create a structure with an executable order-placing module:

(a) Open the Modeling perspective.

(b) Go to File -> New -> GO-BPMN Project.

(c) In the pop-up enter the project name OrderProcessing and click Next.

(d) In the Module name field, enter order-placing and click Next.

(e) Click OK and Finish.

2. Create the data definition with the Order shared record with the following fields:

• item of type String

• price of type Decimal

3. Create the form with the content for the Order page:

10 Forms Tutorials

(a) Create a form definition; make sure to select Use FormComponent-based UI.

(b) Create a form variable order of the type Order for the data of the new order.
(c) On the Methods tab, define a form constructor that initializes the variable.

public OrderForm(){
order := new Order();

}

(d) Insert the following components as displayed below and define the components' properties in their
Properties views:

• Form Layout
• Text Field with the properties:

– ID: itemField
– Caption: "Item:"
– Binding: Reference to the field of the order variable &order.item

• Decimal Field with the properties:
– ID: priceField
– Caption: "Price:"
– Binding: Reference to field of the order variable &order.price

• Button:
– ID: createButton
– Caption: "Place Order"

– Click Listener: Submit on click {e-> Forms.submit(); }

4. Create a document definition with the Order document: set the UIDefinition to return your form:

new OrderForm();

At this point, you have a runnable model: if you run it, you will realize that the order entry in the database is created
at the moment the model instance is created, that is, at the moment you open the Document and the order variable
is instantiated. However, you want to create the entry only after the order data is validated so no bogus data is
persisted in the database. This will allow you to put the cancelling mechanism in place: you will be able to leave the
document without having persisted any data.

This mechanism can be implemented using change proxies: Change proxies hold preliminary versions of
shared Records: the values of change proxies are not reflected in the database. Change proxies exist in sets called
proxy sets. To apply values of proxies and create the actual shared record instances, you merge their proxy set.

You can create a change proxy not only for an existing instance of a shared record but also for a shared record
type; the shared record instance does not exist when you are creating the proxy. It is created when its proxy set is
merged.

../pds/recordchangeproxy.html

2.2 Validating a Record from a Form 11

1. Make the order a proxy:

(a) Create a form variable recProxySet of type RecordProxySet and initialize it from the form constructor
before the order variable.

recProxySet := createProxySet(null);

(b) Also from the form constructor, adjust the initialization of the order variable to be a change proxy over
the order shared-record type:

order := recProxySet.proxy(Order);

(c) In the Click Listener expression of the createButton, add the merge of the proxy set with the proxy
object.

{ e ->
recProxySet.merge(false);
Forms.submit()

}

(d) Add a Cancel button that will navigate away from the screen, for example,

{ e -> Forms.navigateTo(new UrlNavigation(openNewTab -> false, url -> ""))}

2. Validate the order data:

(a) Create a constraint definition and define the constraints for the fields of the Order record.

Figure 2.1 Constraints for the Order Record

(b) To check if the input meets the defined constraints, trigger validation of the order on click of the create←↩

Button: in the Click Listener expression, call the validate() function on the order variable and
handle the returned error messages:

{ e ->
def List<ConstraintViolation> errors := validate(order, null, null, null);
if errors.isEmpty() then
recProxySet.merge(false);
Forms.submit();

else

12 Forms Tutorials

//Displays the errors on the createButton
//if the user never enters any value in the item
//and price field:
showDataErrorMessages(errors, createButton)

end
}

(c) Now the messages from constraints are all displayed on the createButton; Enable displaying of the
messages on the respective input components by calling c.inferValidator(null) on the input
fields.

3. Upload the module and test the document:

(a) Make sure the server is running.

(b) Right-click the module and go to Upload As -> Model

(c) Go to http://localhost:8080/lsps-application and log in.

(d) Click Documents in the menu on the left.

(e) Test the Order page.

Figure 2.2 Order page

2.2.1 Log Process

You will now extend the Order page to instantiate a process that will log a message when the user places an order.

Note that you could simply call the log() function from the UI definition when the user performs some action, too.
However, for demonstration purposes, you will run a BPMN Process, which could potentially execute other actions.

http://localhost:8080/lsps-application

2.2 Validating a Record from a Form 13

1. Create the logging process:

(a) Create a logging module with a BPMN process.

(b) In the graphical editor with the process file, right-click into empty space on the canvas and under New
select the None Start Event.

(c) Drag the quicklinker icon next to the None Start Event to a spot where you want to insert the next
process element, the Log task.

Figure 2.3 Dragging quicklinker

(d) In the context menu, select Task and then Log task.

(e) On the Parameters tab in the Properties view of the task, define the message that should be logged and
its message level.

(f) Connect the task to a Simple End Event.

Figure 2.4 Finished process

14 Forms Tutorials

2. Instantiate the logging model from the createButton: To the Click Listener of the createButton, add the
createModelInstance() function call Note that you can pass a process entity from the call if the process needs
to work with a shared record from the document, in our case the order.

{ e ->
def List<ConstraintViolation> errors := validate(order, null, null, null);
if errors.isEmpty() then
//when the form is valid, the shared record instance is created based on the proxy Order object:
recProxySet.merge(false);
//creates a model instance of the order-placing module
//which instantiates the log Process:
createModelInstance(true, getModel("logging", "1.0"), order, null);
Forms.submit();

else
showDataErrorMessages(errors, orderButton)

end;

3. Save the definitions and upload the modules.

4. To upload the logging module automatically with the order-placing module, import it to the order-placing
module.

5. Go to the application and create an order from the document.

Let's check that the logging model with the process was instantiated:

1. Back in PDS, switch to the Management perspective.

2. Refresh the Models view: It now contains an entry of the logging model instance.

2.3 CRUD Grid 15

Figure 2.5 Model Instance details and live diagram\; note the process entity property in the properties tree
node.

2.3 CRUD Grid

We will create a document with an editable overview of persisted entities: the user will be able to switch the entity
type displayed in the grid, edit and delete any entry.

2.3.1 Creating Database Data

First, prepare the persisted data that will be displayed in the document:

1. Create a data type hierarchy of shared Records Book, Author, and Publisher. Create relationships between
Book and Author, and Book and Publisher as depicted below.

16 Forms Tutorials

2. Initialize database data, for example:

(a) Create a process definition.

(b) In the process, create a workflow that will be executed: for example, a None Start Event with an outgoing
Flow to a Simple End Event.

(c) On the Assignment tab of the Flow, define an expression that will initialize the database data, for
example:

def Author heller := new Author(firstName -> "Joseph", surname -> "Heller");
def Author vonnegut := new Author(firstName -> "Kurt", surname -> "Vonnegut");
def Author kerouac := new Author(firstName -> "Jack", surname -> "Kerouac");
~
def Publisher sas := new Publisher(name -> "Simon & Schuster");
def Publisher p := new Publisher(name -> "Putnam");
def Publisher dp := new Publisher(name -> "Delacorte Press");
def Publisher vp := new Publisher(name -> "Viking Press");

new Book(year -> 1961, title -> "Catch 22", authors -> {heller}, publisher -> sas);
new Book(year -> 1988, title -> "Picture This", authors -> {heller}, publisher -> p);
new Book(year -> 1973, title -> "Breakfast of Champions", authors -> {vonnegut}, publisher -> dp);
new Book(year -> 1969, title -> "Slaughterhouse-Five", authors -> {vonnegut}, publisher -> dp);
new Book(year -> 1957, title -> "On the Road", authors -> {kerouac}, publisher -> vp);

3. Run the module.

The quickest way to test your models is to do the development testing on the PDS Embedded Server: click

to start it and connect PDS to the server, and then right-click the module and go to Run As > Model to
upload the module and create its model instance.

2.3 CRUD Grid 17

2.3.2 Creating the Form

You will create a Grid over the shared Records that will display values of the Record fields:

1. Create a form definition.

2. In the form, insert the Vertical Layout and Grid component.

3. Define the Grid component properties:

• Define its name as EntityGrid

• Set its data source to Type and the value to Author

• Select the Editor enabled flag in the Editing property.

• On the Grid's Init tab, enable filtering by calling c.setFiltrable(true)

4. For each Author property, insert a Grid Columns into the Grid and set the Value Provider to Property path
and insert the property path: you will insert columns for the Author.id, Author.firstName, and
Author.surname property paths. Also select the Editable flag on each column.

5. If you have not done so yet, run PDS Embedded Server by clicking , right-click the form and go to Run
As > Form Preview: this will open a preview of the form in your browser.

Note if you click a row, you can edit the entries: edits are reflected on the database when you save the edits
or press Enter.

The Grid is static and it will always display only Authors. However, the user should be allowed to change the
type of entity displayed in the grid. When they select an entity type, that is, author, book, or publisher, the
content of the Grid need to be updated. And not only the content: the grid columns have to be update so
that the columns with the correct data are displayed. To achieve this, you will use the dynamic features of the
forms.

6. First, let us externalize the setting of the displayed entity type:

(a) Create a form variable currentEntity of type Type<Record> that will hold the entity the user
selects.

(b) On the Grid, set value of the data source to currentEntity.

(c) Run preview of the form: right-click the form and go to Run As > Form Preview. The preview will fail
with a runtime exception since the currentEntity variable is null.

The first solution that comes to mind is to initialize the variable from a component higher in the hierarchy,
in our case, the vertical layout component, during form initialization: However, this will result in the same
exception because these expressions are executed after the form tree is initialized. You can check this
in the form expression (right-click into the form and select Display Widget Expression): You need to
initialize the variable sooner. You can do so in the form constructor:

(d) Open the methods file of the form: the file is created automatically along with the form file and bears the
same name.

(e) Define a new constructor with the variable initialization:

18 Forms Tutorials

public EntityOverview(){
currentEntity := type(Author);

}

7. Next adapt the columns and their value providers according to the currentEntity record. Do this dy-
namically; do not insert individual columns into the form (each entity has requires its own columns):

(a) Delete the Grid Columns in the Grid.

(b) On the Init tab of the Grid, define how to add the columns:

//get a list of properties of the entity in the currentEntity variable:
def List<Property> properties := currentEntity.getProperties();

foreach Property p in properties do
c.addColumn(new PropertyPathValueProvider(p));

end

(c) Run preview of the form: right-click the form and go to Run As > Form Preview.

The next problem is how to deal with display columns for properties on related Records. Let us filter
properties of these complex types: adjust the Init expression on the Grid as follows:

def List<Property> properties := currentEntity.getProperties();
~
foreach Property p in properties do
//exclude properties with Records or Collections:

if !(
p.getPropertyType().isSubtypeOf(type(Record)) ||
p.getPropertyType().isSubtypeOf(type(Collection<Object>))
)

then
c.addColumn(new PropertyPathValueProvider(p), null,

//Boolean sortable:
null,
// Boolean editable:
true,
// Editor editor:
null);

end
end

8. Allow the user to change the value of the currentEntity:

(a) Add a local variable options of type Map<Object, String> and initialize it from the
constructor:

EntityOverview {
public entityOverview(){
currentEntity := type(Author);
//added initialization of options:
options := [Author -> "Author", Book -> "Book", Publisher -> "Publisher"];

}
}

(b) Add a Single Select List component above the Grid with the following properties:

• Binding to Reference and its value to ¤tEntity

2.3 CRUD Grid 19

• Options to Map and its value to options

(c) On the Init tab of the Single Select List component, define the action when the user selects an entity:

c.setOnChangeListener({ e ->
//remove all columns:
foreach forms::GridColumn c in EntityGrid.getColumns() do
c.remove()

end;
//update the type data source of the grid:
EntityGrid.setDataSource(new forms::TypeDataSource(currentEntity));
//get list of properties of the entity record:
def List<Property> properties := currentEntity.getProperties();
//create colums for properties in the grid:
foreach Property p in properties do
if !(p.getPropertyType().isSubtypeOf(type(Record)) or

p.getPropertyType().isSubtypeOf(type(Collection<Object>)))
then

EntityGrid.addColumn(new PropertyPathValueProvider(p));
end

end;
});
c.setNullSelectionAllowed(false);

9. Since a part of the code runs when the user selects an option in the Single Select List and a part of the code
that loads the Grid when initialized are identical, extract the code to a method. The concept is quite generic
so you can define it as an extension method of the grid:

@ExtensionMethod ~
public void setEntityColumns(Grid g, Type<Record> currentEntity) {
~
g.setDataSource(new forms::TypeDataSource(currentEntity));

~
def List<Property> properties := currentEntity.getProperties();

~
properties.compact().collect(

{ p ->
if !(p.getPropertyType().isSubtypeOf(type(Record)) or

p.getPropertyType().isSubtypeOf(type(Collection<Object>)))
then
g.addColumn(new PropertyPathValueProvider(p), null,

//Boolean sortable:
false,
// Boolean editable:
true,
// Editor editor:
null

)
end

}
);

~
}

Adapt the assembly of columns on the grid and on the single-select list to EntityGrid.setEntity←↩

Columns(currentEntity).

10. Add the column with the Delete button: in the setEntityColumns extension method, add the call g.add←↩

ButtonColumn("Delete", { e:Record -> deleteRecords({e})}); to the end. If you
have not defined the method, add the call to the code that creates the columns in the Single-Select component
and to the Init code of the Grid.

There is one more issue to take care of and that is the headers of columns. Normally, to display a name of a Record
or its property, you set the caption expression on each component with the setHeader() call. As this can be

20 Forms Tutorials

pretty tedious, you can use labels to pass the caption expression. Labels are defined on records and fields and
intended to hold their user-friendly name:

1. Set the labels on Field of the Author, Book, and Publisher Records.

2. Set the column header to the label value: if you defined the setEntityColumns() extension method then you
need to add a setHeader(core::getLabel(p)) call to the generated columns. If you have not, you
will need to add it to the code that creates the columns in the Single-Select component and to the Init code of
the Grid.

@ExtensionMethod ~
public void setEntityColumns(Grid g, Type<Record> currentEntity) {
~
g.setDataSource(new forms::TypeDataSource(currentEntity));

~
def List<Property> properties := currentEntity.getProperties();

~
properties.compact().collect(

{ p ->
if !(p.getPropertyType().isSubtypeOf(type(Record)) or

p.getPropertyType().isSubtypeOf(type(Collection<Object>)))
then
g.addColumn(new PropertyPathValueProvider(p), null,

//Boolean sortable:
false,
// Boolean editable:
true,
// Editor editor:
null
)
//adding header to each column:
.setHeader(core::getLabel(p));

end
}

);
g.addButtonColumn("Delete", { e:Record -> deleteRecords({e}); g.refresh()});

}

3. Run preview of the form.

2.3.3 Adjusting Presentation

In the preview, you can spot that the Single-Select List and the Grid have empty space below: their size does not
get adapted to their content.

To fix this, set the number of rows to the number of displayed items:

• on the Single Select List, set the number of rows to the number of displayed options:

c.setRowCount(options.size());

• on the Grid, set the number of rows to the number of data-source entries: You will need to get the number of
entries for the selected Record and set this as the height of the Grid on initialization and whenever the user
changes the displayed entity, that is in the setEntityColumns() method:

2.4 Validation of Multiple Components 21

...
);
g.addButtonColumn("Delete", { e:Record ->

deleteRecords({e});
g.setHeightByRows(countAll(currentEntity));
g.refresh()}

);
g.setHeightByRows(countAll(currentEntity));

}
...

If you need to adjust the presentation further, such as, adding margin, consider using CSS or JavaScript.

2.3.4 Creating the Document

The final step is to create a page with the form: a page is represented by a document definition. When you upload a
document definition, it is included in the list of documents, which are accessible from the Application User Interface.
For more information on documents, refer to Documents-related documentation.

Note: You can create fully customized page in Java directly as well. Refer to instructions on
how to create a custom view.

To define a new document, do the following:

1. Create a document definition file:

(a) Right-click your module.

(b) In the context menu, go to New > Document Definition

(c) In the New Document Definition dialog, define the definition file properties: check its location and modify
its name.

2. Open the document definition file.

3. In the Documents area of the Document Editor, click Add.

4. In the right part, define the properties of the document:

• Name: entityOverviewDoc

• Title: Entity Overview

• UI definition: new EntityOverview()

5. Upload your Module and check the Document on the Documents tab of the Application User Interface.

2.4 Validation of Multiple Components

Required result:

A forms::form component becomes invalid as part of front-end validation when some components hold a certain
combination of values: in the example, a Text Field will be valid only if another Text Field contains a correct value
and if the combination of the values of the fields is valid.

1. Create a form with two Text Fields.

../pds/Documents.html
../custom-application/customizingcontent.html#customview
../custom-application/customizingcontent.html#customview

22 Forms Tutorials

2. Set field IDs, for example, to a and b.

3. Define a method on the form that adds error messages to components when they contain invalid values:

//rules for validation of the fields:
private void validateGroup(){
//error message for field a:
def String error1 := (a.getValue() == "1" and b.getValue()== "1") ? "Values must not equal 1." : null;
//error message for field b:
def String error2 := (b.getValue()== "3") ? "b value must not equal 3." : null;
def String all := joinErrors(error1, error2);
//setting the errors as custom error messages on a:
if !all.isBlank() then

a.setCustomErrorMessage(all);
else

a.setCustomErrorMessage(null)
end

}
//concatenate errors from components:
private String joinErrors(String... errors) {

def String concatenated := join(errors, "
");
concatenated.isEmpty() ? null : concatenated;

}

4. Call the method whenever a value is changed on either of the fields.

//Init on text fields:
c.setOnChangeListener({ e ->

validateGroup()
})

2.5 Editing Data in a Popup with Conflict Check 23

2.5 Editing Data in a Popup with Conflict Check

Required result: The user accesses a Grid with entries of a shared Record type via a document. When they click
the Edit column in a row, a Popup with editable data of the row is displayed. They can either save the changes or
drop the changes. If someone else has edited the applicant in the meantime, log a notification.

The Popup form is reusable: the same form is used on two occasions: when creating a new applicant and when
editing an existing applicant:

We will use the Applicant shared record displayed below.

Figure 2.6 Applicant record with the Level enumeration used in the Applicant Record field

2.5.1 Displaying the Applicant List

Create a form with the list of applicants:

1. Create the form ApplicantGrid.

2. Design the form:

(a) Insert a Vertical Layout.

(b) Insert a Grid.

3. Set the Grid properties:

(a) Set the ID to applicantListGrid.

(b) Set the data source to Type and its value to the record type Applicant.

4. Insert the Grid Column for applicant properties:

• Set the Value Provider to Property Paths.

• Set the values of value providers to the Applicant fields: Applicant.firstName, Applicant.←↩

lastName, and Applicant.level.

• For the Applicant.level, set the renderer to Enumeration.

24 Forms Tutorials

2.5.2 Displaying and Editing Applicant Details

To display the applicant data in a popup and to create a new applicant, you will create not only the form for the
popup but also an object that will hold a copy of the applicant data. This will allow the user to close the popup
without saving any changes they might have made. Were you to use the applicant object directly in the popup, the
changes in the form would be applied immediately on the object.

Create the form for the details:

1. Create a form definition ApplicantDetailPopup.

2. In the Outline view, select the form root component and, in its Properties view, set its type to forms::Popup
and make sure it is public.

2.5 Editing Data in a Popup with Conflict Check 25

3. Create the form variable for the proxy mechanism, the applicantProxySet form variable of type RecordProxy←↩

Set.

4. Create the applicant form variable of type Applicant, which will hold the data of the new or edited applicant:
right-click the root node in the Outline view and select New > Variable; set its name to applicant and
type to Applicant.

5. Define a parametric form constructors in the methods file of the form: Pass it the applicant parameter and
store it in its proxy form variable so the popup can work with a proxy copy of a particular applicant:

public ApplicantDetailPopup(Applicant applicant){
applicantProxySet := createProxySet(null);
//change proxy of the applicant object is assigned
//so that changes on the applicant are stored only after the user clicks Save:
this.applicant := applicantProxySet.proxy(applicant)

}

6. Design the form tree: keep in mind it represents the content of a popup; bind the input fields to the application
variable as appropriate.

26 Forms Tutorials

7. Define the click listener expression on the Save button:

{ click:ClickEvent ->
//apply the changes if the record has not been changed in the meantime;
try applicantProxySet.merge(true)
catch "com.whitestein.lsps.common.OptimisticLockException" ->

//log a message if the record has been changed:
log("failed to merge changes", 100);
notify(
caption -> "Conflict on merge",
description -> "Your changes could not be saved: the data was changed."

);
end;
//close the popup:
this.setVisible(false)

}

8. Define the click listener expression on the Cancel button:

{ click:ClickEvent ->
this.setVisible(false)

}

Now you need to display the data of an applicant in the popup when the user clicks an Edit button:

1. Insert a Grid Column that will render the Edit button that will open the public Popup with the row data:

2. Set the column details:

(a) Set Value Provider to Constant with the value "Edit".

(b) Set Renderer to Button.
(c) Below define the button action so that it creates and displays the popup with the data of the edited

applicant:

{ clickedApplicant:Applicant ->
//create the popup with details:
def ApplicantDetailPopup appDetailPopup := new ApplicantDetailPopup(clickedApplicant);
~
//display the popup:
appDetailPopup.setVisible(true);
~
//set listener on the popup, so the grid with applicants is updated when the popup closes:
appDetailPopup.setPopupCloseListener({ e->applicantListGrid.refresh()});

}

2.6 Filter over Grid and Table with a Custom Data Source 27

2.5.3 Creating a New Applicant

To allow the user to create a new applicant from the form, do the following:

1. Add to the methods of the ApplicantDetailPopup form, a non-parametric constructor that initializes the appli-
cant variable to a proxy of the Applicant type:

public ApplicantDetailPopup(){
//proxy set init:
applicantProxySet := createProxySet(null);
//change proxy diretly over the Applicant type:
applicant := applicantProxySet.proxy(Applicant)

}

2. In the ApplicantGrid form, insert a New Applicant button.

3. Define its click action so it creates and displays the public popup using the non-parameteric constructor:

{ click:ClickEvent ->
//creates the public popup with the non-parametric constructor:
def ApplicantDetailPopup appDetailsPopup := new ApplicantDetailsPopup();
appDetailPopup.setVisible(true);
//refreshes the grid so it contains the new applicant:
appDetailPopup.setPopupCloseListener({ e->applicantListGrid.refresh()});

}

Now you can use the ApplicantGrid form in documents or user tasks as their UIDefinition.

You can download the tutorial example here.

2.6 Filter over Grid and Table with a Custom Data Source

Note: This tutorial uses the forms module as its form implementation.

Required outcome: A form with a grid and table that use a custom data source and support filtering.

Note: You can download the tutorial model here: once you have imported the archive, you can test
the model by running the filterGrid module.

../media/tutorials/models/gridWithPopups.zip
../media/tutorials/models/filterGrid.zip

28 Forms Tutorials

2.6.1 Implementing a Custom Data Source

1. Make sure the record of the custom data source implements the forms::DataSource interface.

2. Add fields to the record for the filters as set on the Columns.

Figure 2.7 Custom data source record

3. Adapt the data source methods so that the getCount() and getData() methods handle the filtering.

The filters are passed as input parameters to the methods.

Example data source methods

ApplicantDataSource {
~
public Integer getCount(Collection<forms::Filter> filters){
~

def String firstnameFilterSubstring := getFilterValue("firstName", filters);
def String surnameFilterSubstring := getFilterValue("surname", filters);

~
//count query that filters the results:
getApplicants_count(firstnameFilterSubstring, surnameFilterSubstring);

}
~
public List<Object> getData(Integer startIndex*, Integer count*, Collection<forms::Filter> filters, Set<Sort> sortSpecs){
~

def String firstnameFilterSubstring := getFilterValue("firstName", filters);

2.6 Filter over Grid and Table with a Custom Data Source 29

def String surnameFilterSubstring := getFilterValue("surname", filters);
~

//query that gets results and applies filters:
getApplicants(firstnameFilterSubstring, surnameFilterSubstring);

}
~
private String getFilterValue (String filterParameterName, Collection<forms::Filter> filters){

//get first filter with matching name:
def forms::Filter firstMatchingFilter := getFirst(filters, { f -> f.id == filterParameterName});
// get search substring in filters:
def String filterSubstring := firstMatchingFilter == null ? null : (firstMatchingFilter as SubstringFilter).value;
filterSubstring

}
~
public Boolean supportsFilter(forms::Filter filter*){
if

filter.id == "firstName" || filter.id == "surname" then true;
else

false
end

}
~
public Boolean supportsSort(Sort sort*){
false
}

public String toString() {
#"ApplicantDataSource"

}
}

2.6.2 Creating the Form

1. On the Grid, set the data source to Custom with the value of the data source instance.

new ApplicantDataSource()

2. On the columns of the respective component, do the following:

(a) Enable filtering.

(b) Configure the filter ID on the column:

• For a Grid column, set on the Init tab as c.setFilterConfig(new Filter←↩

Config(filterId -> "FILTERNAME")).
• For a Table column, set on the Filtering tab as new FilterConfig(filterId -> "FI←↩

LTERNAME").

30 Forms Tutorials

2.7 Icon in a forms::Grid

Required result: A Grid Column displays an icon in the given row.

1. Create a GO-BPMN project with a module and a forms definition.

2. In the forms definition, insert a Grid and define its data source, for example, collection {1..10}.

3. Insert a Grid Column into the Grid, which will hold an icon.

2.7 Icon in a forms::Grid 31

4. On the column, set type of the value provider to Closure and define its value as a closure that returns the
icon, for example:

{ i:Integer ->
new FontAwesome5("ambulance").toHtml();

}

5. Set the renderer to HTML.

You can modify the closure so the icon changes depending on circumstances:

//i is the row object: we set the data source to a collection
//of Integers; therefore, it is an Integer:
{ i:Integer ->

def FontAwesome5 icon;
if i%2==0 then
icon := new FontAwesome5("sticky-note");

else
icon := new FontAwesome5("ambulance");

end;
icon.toHtml();

}

32 Forms Tutorials

Chapter 3

UI Forms Tutorials

• Editable Table

• Table with Derived Values

• Calendar with Adding Entries Functionality

• Pop-up with Save and Cancel Buttons

3.1 Editable Table

Required result:

• ui::Table with columns with editable values.

• One of the columns contains a drop-down list with the possible options. The options are based on an enu-
meration.

• The table values are persisted when you click the Submit button.

Figure 3.1 Resulting form

To create a document or a to-do with such a table, you need to do the following:

1. Create the data type model with a shared record for the persisted entity and the enumeration.

34 UI Forms Tutorials

Figure 3.2 The underlying data type hierarchy

2. Create the form definition.

(a) Create a form variable applicant of the shared record type Applicant: The table will use the variable as
its iterator.

(b) In the form, add the Table component and define its properties on the Detail tab:

i. Set Data Iterator as the reference to the form variable.
ii. Set Data Kind.
iii. Define the Data expression.

In this pattern, we assume you are using the Data Kind set to Data with the Data expression defined as
a closure with two input parameters:{x, y -> getAllApplicants()}

(c) In the table component, insert the Table Column components.

(d) In the columns, add the Input components.

Figure 3.3 Asset table with columns with two text boxes and one combo box

In the example, we inserted two Text Boxes and one Combo Box:

i. On Text Boxes, define the binding to the reference to the iterator fields, for example,
&applicant.surname.

ii. On the Combo Box component, define the binding to the iterator field and the options to be dis-
played in the drop-down area.

To bind options to the enumeration, convert the enumeration literals to options. You can do so using the
collect() and literalToName() functions.

3.2 Table with Derived Values 35

collect(literals(type(Level)),
{e -> new ui::Option(value -> e,

label -> literalToName(e))})

(e) Define the Submit button:

i. Insert the Button component into the form.

ii. Create ActionListener on it.

iii. On the listener properties, select the Submit action on the Actions tab.

(f) Optionally, set the text that should be displayed in the table if it contains no entries: on the Presentation
Hint tab of the table properties, add the no-data-message hint.

3. Create a document or a process with a to-do that uses the form.

3.2 Table with Derived Values

Required result: A table with a column with a value derived from another column value: One column value is
persisted; the derived value is transient. The column values depend on each other and adapt to each other when
either is changed.

Figure 3.4 When you change Interest Rate, the Withdrawal Date changes. Withdrawal Date is not persisted.

1. Create the underlying data type hierarchy with the base shared record and a non-shared record with fields
for the derived values:

(a) Create or import the base shared record.

(b) Create a record with the derived field.

(c) Define an association between the records: the derived record is the target of the relationship.

36 UI Forms Tutorials

Figure 3.5 Base shared record TimeDeposit associated with the derived non-shared record Withdrawal

Important: In such scenarios, you cannot use the supertyping mechanism since a shared
record is involved:

• If you used a derived non-shared record that is the supertype of the base shared record,
the derived record would include the fields of the base shared record but the shared record
itself could not be recovered efficiently.

• If you used a derived non-shared record that is the supertype of the base shared record, If
you decided to define the base shared record as the supertype of the wrapper non-shared
record, whenever you decide to refresh the table with the record data, new shared record
instances would be created and written in the database.

2. Create the form definition.

(a) Create a local variable of the derived record type.

The variable will serve as the iterator variable for the table.

(b) Create a local variable of the collection type with the derived records (for example, List<Withdrawal>),
and initialize it so it holds the available Withdrawal object, for example, with the collect() function.

3.3 Calendar with Adding Entries Functionality 37

Figure 3.6 The collection form variable with the initial value

(c) In the form, insert the Table component and define its properties:

• Data Kind as Data
• Data as a closure that returns the local variable with data.
• Data Iterator as reference to the iterator variable

(d) In the table component, insert Table Column components and input components as their child
components: define their ID and the binding of the input components to the respective field of the
iteration variable (in the example, ¤tWithdrawal.timedeposit.interestRate and
¤tWithdrawal.withdrawalDate).

(e) On each input component define the following:

i. Create ValueChangeListeners: as the component to refresh, define the other input component and
as Handle expression, define the new value of the iterator field, for example, using a function. Do
not define the column as the component to be refreshed. Columns do not support the refresh
action.
currentWithdrawal.withdrawalDate:= countWithdrawalDate(currentWithdrawal.timedeposit.interest)

ii. Set the Immediate property to true otherwise change of a value will not trigger change of the
other value: the change would take place only after another event triggers the processing.

When set to true, the value changes are processed whenever the user clicks out of the input component or
presses Enter.

3. Create a document or a process with a to-do that uses the form.

3.3 Calendar with Adding Entries Functionality

Required result: Form with a calendar into which you can add entries by selecting days in the calendar: entries
details are defined in a pop-up dialog.

Do the following:

38 UI Forms Tutorials

1. Create or import the shared record for your calendar entries.

Figure 3.7 Shared record for calendar entries derived from the CalendarItem record

2. Create a form definition, open it and insert a Vertical Layout component.

3. Create a local variable of the calendar entry type.

The variable will hold the data about a new calendar entry. For the example above, the variable will be of the
CalendarEntry type.

4. Create the calendar:

(a) Insert the Calendar component into the vertical layout.

3.3 Calendar with Adding Entries Functionality 39

Figure 3.8 Vertical layout with calendar component

(b) Define the properties of the calendar:

• Data: closure that returns all calendar entries (The closure is called on calendar initialization and
refresh: After you add a new calendar entry to the database, the calendar needs to be refreshed
so as to load and render the new calendar entry.)

{ a, b -> (toSet(findAll(type(CustomCalendarItem)))) }

• To item: transformation of the data object to CalendarItem so the Calendar component knows how
to display them; in this case, transformation of the CalendarEntry to ui::CalendarItem.

{ calItem:CalendarEntry -> new CalendarItem(caption -> calItem.caption, description -> calItem.description,
from -> calItem.from, to -> calItem.to, allDay -> calItem.allDay, style -> calItem.style)}

5. Create the popup:

(a) In the form, insert the pop-up component and define its properties:

• ID: although component ID is not required, you will need it when displaying the pop-up (on button
click, the visibility variable will be set to true the pop-up component will be refreshed so as to have
it rendered).

• Visible: enter a name of a Boolean variable that holds the visibility of the popup.
You can define a Boolean form variable; make sure to set its initial value to false.

(b) Nest the pop-up component in a View Model: right-click the popup and selects Insert Parent > View
Model. Define its ID.

Note: The view model component isolates the data in the pop-up component from the data in
the form context: it creates an evaluation context over the screen context. You will initialize the
calendar entry variable when the pop-up is displayed and get the dates the user selects in the
pop-up, all this will take place in the new evaluation context.
If you don't nest the pop-up in a view model component, the initialization of the variable will
create a shared record with incomplete data in the screen context. When nested in the view
model, the data is written into the screen context only after it is submitted or persisted by a
listener.

6. Create the content of the popup: insert the Form Layout component and into it input components so the user
to provide the other details for the CalendarEntry. Make sure the input components are bound to the correct
field of the CalendarEntry variable.

40 UI Forms Tutorials

Figure 3.9 Calendar form

7. On the calendar component, create a CalendarCreateListener that will display the popup with the selected
dates, when the user selects a time period by clicking and dragging:

• Set its visibility to true and refresh it:

– On the Basic tab, enter the pop-up ID as the Refresh components value.

– On the Basic tab, define the handle expression so it sets the variable with the pop-up visibility
to true.

• Initialize calendar entry with the clicked dates: on the Basic tab, in the Handle expression, extract the
dates from the event into the CalendarEntry variable:

calEntry:=new CalendarEntry(
from -> _event.from,
to -> _event.to
)

8. Define the submit button in the pop-up that will persist the provided data and close the pop-up:

• In the pop-up component of the form, insert the button component and define its properties.

• Create the ActionListener on the button with the following:

– Handle expression hides the pop-up.

– Refresh the pop-up and the calendar.

– Merge the view model (On the Advanced tab, enter the ID of the view model in the Merge view
model components property)

– Persist to save the new event in the database so it is picked up by the findAll() call on calendar
refresh.

3.4 Pop-up with Save and Cancel Buttons 41

Figure 3.10 Listener on the submit button

3.4 Pop-up with Save and Cancel Buttons

Required result: When you click a button in your form, a popup where you can edit the form data is displayed. The
pop-up contains an Save and a Cancel button. When you click the Save button, the pop-up closes and the data in
the form contains the new data. When you click Cancel, the data in the pop-up is discarded and the pop-up closes.

42 UI Forms Tutorials

To create a pop-up window with a Save and Cancel button, do the following:

1. Open the form with the data you want to edit in the popup.

In the example, the data already exists and is stored in a form variable. If you want to create new data from
the popup, make sure to initialize the data in the View Model we create in the next step.

Figure 3.11 Form with user details

2. Insert the View Model component into the form and define its ID.

The view model creates a new context for its child components. It holds the differences to the form context.
This will allow us to discard or save the differences in a single step: we will either merge the view-model
context or discard it (for more details on how it works, refer to view model).

3. Insert the Popup component into the View Model component.

If you plan to create a complex component tree in the popup, consider using the dynamic popup to
prevent performance issues: the dynamic popup is created only when the popup is requested, while the
modeled popup is created when the form is initialized, which can be time consuming.

4. Define the popup behavior:

(a) Create a Boolean form variable with the initial value to false and set the variable as value in the
Visible property of the popup.

(b) Create the logic that will open the popup, for example, insert a Button with an ActionListener that sets
the visibility variable to true and refreshes the popup.

../ui-vaadin/uispecialcomponents.html#viewmodel
../ui-vaadin/containercomponents.html#dynamicpopup

3.4 Pop-up with Save and Cancel Buttons 43

Figure 3.12 Setting Popup visibility for the ∗Save∗ button click

5. Create the popup content:

(a) Insert a layout component and input components into the Popup component.

(b) Bind input components to the local variable and define the labels.

(c) Insert the Button component for the Save button and attach to it an ActionListener that will execute the
following:

• Merge the changed data to the form context: On the Advanced tab in the Merge view model
components property, insert the ID of your view model.

• Close the popup: on the Basic tab in the Handle expression, set the popup visibility to false and
in the Refresh components, insert the ID of the popup component.

• Refresh the data in the form (outside of the view model): in the Refresh components, insert the IDs
of the components.

44 UI Forms Tutorials

(d) Insert the Button component for the Cancel button and attach to it an ActionListener that will execute
the following:

• Close the popup: on the Basic tab in the Handle expression, set the popup visibility to false and
in the Refresh components, insert the ID of the popup component.

• Discard the changes in the View Model: On the Advanced tab in the Clear view model components
property, enter the name of your view model.

• Set the listener to execute in the form context: On the Advanced tab, set the Execution context
property to Top level.

If left set to default, the listener would execute in the execution context created by the view model. Since we
are discarding the data from the view model, the visibility setting would be discarded as well and the popup
would remain open.

3.4 Pop-up with Save and Cancel Buttons 45

Figure 3.13 Setting cancel as View Model action for the Cancel button click

6. Run the Form Preview and check the functionality.

46 UI Forms Tutorials

Chapter 4

Process Tutorials

• The pattern of restartable processes allows you to design model instances that can be restarted at any point
and acquire the same execution status.

• The pattern of agile processes allows you to design processes in which you can skip an Activity or a flow, and
switch between Activities or flows as required without breaking your data.

• To create a model instance over a record with your business data can be useful in the cases when you allow
your users to create entities for documents: The user creates an shared record from a document, for example,
an order, and on submit a new model instance takes care of further actions over the entity, such as processing
the order.

• To monitor the start of a model instance can help you to make sure that restartable model instances are in
the correct status upon restart: The user adapts a restartable model so that the starting is monitored from the
correct point and checks the starting on runtime from Management Console or Management Perspective.

4.1 Restartable Processes with Start Monitoring

Restartable processes refer to business models that are designed in such a way that they can be restarted at
any point of their execution without losing or corrupting any data or the model instance status after restart: when
restarted, such model instances skip through the activities that were already performed until they reach the status
from before the restart. To design such models, you need to make sure that the models rely only on persisted data;
the model instance itself must not at any point rely on any data that gets lost when it finishes.

For example, if you interrupt an order-dispatch process at a moment when the order is ready for dispatch, on the
restart of the model instance, the process omits the invoicing and payment activities based on the order status and
proceeds directly to the dispatch activity.

This design pattern is especially useful when you want to be able to update the underlying models or
application. With restartable models you simply

• finish the running model instances;

• upload the new version of the model;

• start up the model instances again.

In the sections below you will learn how to:

• Design models that rely on the status for their execution station on persisted business data.

• Design an orchestrating model, that will start model instances over the business data anew. It will follow the
start of the model instances so you can check if the starting finished successfully.

../server-deployment/serverupgrade.html#deployingupdatedmodule
../server-deployment/serverupgrade.html#deployingupdatedmodule
../management/modelinstancemanagement.html#finishingmodelinstance

48 Process Tutorials

4.1.1 Designing a Restartable Process

We start from a simple flow that runs over a piece of business data stored in the process variable. The flow has two
User activities which signal that the status of the business data changes or is about to change.

In the todo generated by the User activities the user simply submits their Todo.

At this point, the status of the business data is updated to a new status in the User Task assignment. Like this, the
status is preserved, even if the model instance is terminated.

Figure 4.1 Assignment in the User Task that sets the status of the order variable when the user submits the
todo

Therefore to make a model instance restartable, change your model as follows:

1. Persist all data relevant to the flow logic: Store it in Shared Records or their fields.

In the example, we must change the type of the order process variable from a common record to a shared
record: every model instance runs for a particular order. The status of the order process is determined by the
status field of the order variable.

2. Adapt the way you acquire the business data so that the process gets the correct data when started.

In the example, this means to initialize the order process variable to one of the following:

• new Order shared record: no business data exists yet; the order is just being placed.

• existing order: the model instance runs over an existing order; the order is passed as a parameter to
the model instance.

4.1 Restartable Processes with Start Monitoring 49

Figure 4.2 Initialization of the order process variable

3. Design the mechanism that skips over to the latest possible flow element when the persisted business data
has some value, in the example, the order status value decides whether the default flow or the condition flow
of the gateway is taken to the next User Task:

(a) Add an exclusive gateway before any element that changes the status of your business data.

(b) Define the flow that enters the element as default.

(c) Design another flow that will go around the element.

(d) Add the required condition on the non-default flow of the gateway.

Figure 4.3 Restartable mechanism built around a simple flow

4. Define the orchestrating model which will run a model instance of the order process over each Order instance.

50 Process Tutorials

Figure 4.4 Process that runs a model instance over each order record

5. Insert the mechanism that will monitor that the starting of the order model instances and the orchestrating
model instance succeeded:

(a) In the orchestrating process, call watchStarting() on the started model instances. This will acti-
vate the monitoring of its start.

foreach Order o in findAll(Order) do
def ModelInstance i := createModelInstance(true, getModel("simpleRestartableProcess"), o, null);
watchStarting(i);

end

(b) Add the clearApplicationRestartData() call before the createModelInstance()
calls: this will remove the data about the previous model-instance starting.

(c) Call watchStarting(thisModelInstance()) after the clearApplicationRestart←↩

Data() call on the orchestrating model as well; like this you can check if the starting of this instance
was successful. Call the function from, for example, the Start assignment of the process. The location
of the call does not really matter, however, it must be called from within the first transaction of the model.

4.2 Agile Processes 51

Figure 4.5 Orchestarting process with the start-watching calls on the Start Event

This is a very simple process and in more complex processes, the designing of the skipping might become tedious
if not impossible. Consider extracting the skippable elements that change the status of your data to separate
processes and create a process that will call them in Reusable Subprocess activities. For a full example, refer to
the agile pattern.

To test the model:

1. Run a few instances of the business model and submit some of the todos to produce some testing data.

2. Finish all running model instances.

3. Run the orchestrating model instances.

4. In Management Console or Management perspective, go to Application Restart and inspect the start moni-
toring data.

4.2 Agile Processes

Required result: A model that is restartable and allows the user to move between tasks arbitrarily:

• When the adminstrator restarts the model instance, the model instance will recover its original progress based
on persisted data.

52 Process Tutorials

• When the user can move to any task in the workflow.

Note: You can download an example implementation here. To import the model, do the following:

1. Create a GO-BPMN project.

2. Right-click the project and select Import > Archive file.

3. Enter the path to the zip file into the From archive file field.

4. Click Finish.

Patterns of agile mechanisms solve the following:

• Set the correct execution state after restart: on restart, the process omits activities that were already
performed.

For example, if you interrupted an order-dispatch process at a moment when the order is ready to be dis-
patched, on restart, the process omits the invoicing and payment activities and proceeds to the dispatch
activity.

This also allows you to update the underlying model easily: you stop your model instances, upload a new
version of the model, and resume the stopped model instance according to the new model. The new model
instance get into the same or equivalent execution status as the original model instance on resume.

• Skip arbitrarily through activities: skipping is used to implement such features as breadcrumb navigation;
the user can switch between activities freely. On switch, the process deactivates the current activity and
activates another.

The pattern is as follows:

• Each "skippable" flow sequence is implemented as a process or a task type: the sequence has the activity
reflection type enabled so it can be triggered by the Execute task.

• The sequence is executed by an Execute task of a wrapper process, which wraps the Execute task in the
skipping mechanism.

• The wrapper process takes a parameter with the current step: if the current step does not correspond to the
required step, the Execute task is not executed.

• The wrapper process is called as a subprocess from an orchestrating main process.

• If the skippable flow sequence signalizes that it should be deactivated, the Executable task handles the
signalization, deactivates the wrapper process and activates another wrapper process.

4.2.1 Base

We will create a process that will represents one step of our process: The step will be then used multiple times in a
main process in a series of Reusable Subprocesses. We will design the ommitting and skipping mechanisms in the
step process.

1. Design the subprocess:

(a) Create a BPMN-based process called step.

(b) Unselect the Instantiate Automatically option in the process properties: If you leave the option selected,
a bogus instances of the step process would be created everytime we instantiate the main process.
Also, it would not be possible to define parameters for the process.

../media/tutorials/models/agile.zip

4.2 Agile Processes 53

(c) Define the process parameters: these should provide data for the activity of the step.

For example, use the User task and design for it a form with a submit button.

2. Design the coordinating parent process:

(a) Create process definition with a BPMN-based process; name it flow.

(b) In the flow process, create a flow of Reusable Processes with the step process.

3. You now have a working model: run it and check that the process instance has one step sub-Processes
running at a time and that the step sub-process is not instantiated as its own process instance.

54 Process Tutorials

Figure 4.6 Model instance details of a successful run

4.2.2 Skipping

The skip mechanism allows you to restart your model instances at any point without having to worry about data
consistency or flow interruptions.

To implement it, we will make the flow process send data on whether the step process needs to execute its Activity
to the step process. The value of the data should depend on persisted data so it remains unchanged in case of
model instance restart. However, we will use a global variable to store the data to keep it simple.

Goal: Create the skipping mechanism inside step around its Task and make the flow send the omitCondition value
to step.

1. In the step process, design the evaluation of the condition:

(a) Define the omitCondition parameter of type Boolean: the parameter will be sent by the parent
process.

(b) Around the step task, design the workflow that will avoid the Activity when the omitCondition will
be true.

4.2 Agile Processes 55

(c) Make the flow pointing to the activity the default flow.

2. Create a global Integer variable lastSuccessfulStep with initial value 0: it represents the last successfully
executed step process.

3. In the flow process, pass the condition based on the last successful step as the omitCondition argument to
each Reusable Process.

• on the first Reusable Subprocess omitCondition -> lastSuccessfulStep >= 1 (When
the last successful step equals or is larger than 1, the condition is true.)

• on the second Reusable Subprocess omitCondition -> lastSuccessfulStep >= 2
(When the last successful step equals or is larger than 2, the condition is true.)

4. Test the process, set the initial value of lastSuccessfulStep to a value (0, 1, and 2) and run a model instance
with the value. Check the behavior of the subprocesses: make sure the skipping works as expected.

56 Process Tutorials

Figure 4.7 Run with lastSuccessfulStep set to 1. The subprocess that used the omitting flow displayed
below.

Points to Consider

• While here you are omitting the same task over and over again, in real world scenarios, you will omit different
types of Activities:

Change the type of the User task in the step sub-process to the Executable task type and pass the user task
in the activity parameter of the sub-process along with the condition parameter.

• To evaluate the conditions for omitting, do not use global variables: use data persisted in the database.

4.2.3 Deactivation

The deactivation mechanism terminates the current sub-process instance under specific circumstances. It could be
either when it receives a signal or when a condition becomes true.

We will use a Signal: To the Task in the step process, we will attach an interrupting Catch Signal Intermediate Event.
It will wait for the Task to throw a Signal: when this happens, the Signal Intermediate Event will be activated and the
Task deactivated. The execution will take the outgoing flow of the event, which will enter a No Exit End Event. The
end event will terminate the sub-process instance without letting the subprocess produce a token: this will prevent
the parent process from continuing its execution.

To design the deactivation mechanism, do the following:

4.2 Agile Processes 57

1. Adapt the Task in the step process so it throws a Signal; for example, if you are using a User task,
add to its form a Deactivate button, which calls sendSignal(false, {thisModelInstance()},
"deactivate") when clicked.

2. Adapt the step so it finishes when it receives a Signal:

(a) Add an interrupting Intermediate Catch Signal Event to the boundary of the Task.

(b) Set the filter to { r:Object -> true}) so it catches any Signal.

(c) Connect the event to a No Exit End Event:

The No Exit End event ends the execution flow of the reusable sub-process just like Simple End Event.
Unlike Simple End Event, it prevents the execution to continue out of the Subprocess: The Subprocess
does not produce a token.

3. In the flow process, change the Reusable Subprocesses to Inline Event Subprocess.

Inline Event Subprocesses are considered a part of the parent process, that is, the flow process. They are
instantiated as process instances while non-inline-event subprocesses create subprocess instances. Only
Inline Event Subprocesses can finish with a No Exit Event.

4. Run the model and deactivate it in one of the steps.

58 Process Tutorials

Figure 4.8 Model instance deactivated in the first subprocess. The diagram with the activity deactivated by
the Catch Signal Event is below.

4.2.3.1 Summary

You have implemented the following behavior:

1. The User Task or another Activity of the step process can throw a Signal.

2. When this happens, the Catch Signal Intermediate Event catches the signal and terminates the Activity.

3. The outgoing flow of the Catch Signal Intermediate Event is taken.

4. The No Exit Event end is executed: The step subprocess instance finishes.

5. The flow process instance finishes since no sub-process instance is running.

6. The model instance is deactivated.

4.2.4 Activation

The model can now omit already performed Activities and deactivate their step processes. Now you need to let the
flow process activate the correct step when another step is deactivated. You will pass the information to the step
process as a parameter in the deactivation Signal:

4.2 Agile Processes 59

1. Add the id Integer parameter to step so you can identify the step to activate. The parameter will be populated
by the flow process depending on the position of the Reusable Process in the flow and hold the step that
should be activated upon deactivation.

2. Add the information on which step should be activated upon deactivation to the deactivation Signal you are
sending from your Task:

sendSignal(false, {thisModelInstance()}, goto)‘

If you are using a User Task as your activity, rename the Deactivate button to Go To Activity and navigate
away from the to-do, when the user clicks it so the user is not stuck on a page with the to-do of the deactivated
task.

3. Still in the step process, add the Signal Start Event

Since step is an Inline Event Subprocess, all Signal Start Events in all steps will be listening for a Signal and
can be activated when a Signal is received.

4. Define the Signal Start Event filter so the step process is activated only if its id parameter set by flow matches
the goto parameter sent in the Signal: { activateStep:Integer -> activateStep == id
}

60 Process Tutorials

5. In the flow process, add the id parameter value to the reusable sub-processes and the goto parameter.

6. Run the model.

4.3 Creating a Model Instance from Document and Navigating to its To-Do on Submit 61

Points to Consider

• Typically, you will skip to a step based on input provided by a user in a to-do: in such a case, you will need to
adapt the respective form so it passes the go-to data: a listener could send the signal with a goto value from
an input field.

4.3 Creating a Model Instance from Document and Navigating to its To-Do on Submit

To create a model instance from a document and then navigate to one of its To-dos, do the following:

1. Open the form of your document:

• For ui-module forms, define a listener that will create the model instance as follows:

(a) Attach a listener of the required type to a component.

(b) Create the model instance in its persist action, for example, createModelInstance(true,
getModel("myModelName"), null)

(c) Define a listener with the Submit action (it represents the moment when you want to submit the
data and navigate away from the document).

62 Process Tutorials

• For forms-module forms, define the following expression on the respective component listener (typically
the click listener of an action component, such as a Button):

{ e -> createModelInstance(true, getModel("runMe"), null); Forms.submit()}

2. Optionally, define the Navigate property in the document definition so the document navigates to a to-do
generated by the model instance when submitted:

\navigates to the first to-do generated by the document:
{todos:Set<Todo> -> new TodoNavigation(todo -> todos[0], openAsReadOnly -> false)}

4.4 Monitor the Start of Model Instances

Monitoring the start of model instances allows you to check if a model instance has successfully finished its start
sequence, which is by default the first model transaction.

Monitoring the start of model instances is typically useful when starting restartable model instances. Restartable
model instances are based on a pattern that makes sure that a model instance returns to the correct status after if
finished prematurely.

Such models rely on persisted business data for their status: If a piece of business data has been already handled
by the given flow element or has been otherwise processed so that the element does not need to be executed, the
element is skipped. More details on the pattern are available in the tutorial on restartable models:

../modeling-language/transactioninmodelinstances.html

4.4 Monitor the Start of Model Instances 63

When finishing and subsequently starting restartable model instances with the monitoring mechanism in place, you
can check when and if the model instances have reached the status they were in before restart: You can start and
check the status of the model instances manually, however, it is recommended to design an orchestrating model
that will start and monitor the starting of model instances over your business data.

4.4.1 Monitoring the Start of Model Instances

To implement the monitoring of model instance starting:

1. Create a model with a process that will orchestrate the starting:

(a) Monitor starting of the orchestrating model: call clearApplicationRestartData() to clear the
data from a previous start-monitoring run and watchStarting(thisModelInstance()), for
example, from the Start assignment of the process.

(b) Make the process create model instances of the restartable model and pass it the relevant business
data.

(c) Mark the place from where to start monitoring the model instances by calling watch←↩

Starting(<ModelInstanceToFollow>): At this point, the starting status of the model
instance will be set to IN_PROGRESS.

Figure 4.9 Orchestarting process with the start-watching calls on the Start Event

2. Adapt the restartable models:

(a) Optionally, define where the start sequence finishes: By default, this is when the first transaction of the
monitored model instance has been executed successfully: the starting status of the model instance is
set to FINISHED. To finish the start sequence later, define the point when to finish manually.

64 Process Tutorials

4.4.2 Defining Finish of the Start Sequence

To define, when the starting of a model instance finishes explicitly do the following:

1. Along with the watchStarting() call, call explicitFinishing() to prevent the watching from
finishing after the first model transaction.

2. Mark the finish of the start sequence with the modelInstanceStartSucceeded() call.

With the explicitFinishing() in place, the starting status of the model instance will be IN_PROGRESS←↩

_EXPLICIT_FINISH.

4.4.3 Defining Number of Expected Model Instances

You can define the number of expected model instances that finish their Start with the setCountOfModel←↩

InstacesToStart() call: the number is displayed in the Application restart views.

4.4.4 Checking the Start Progress of Model Instances

You can follow the status of starting of model instances in the Restart Application view in Management Con-
sole or in the Management perspective. Also, you can use the getStartStatus(ModelInstance
modelIntance) and getStartStatuses(List<ModelInstance> listOfModelIntances)
and getRestartInfo() functions of the Standard Library or the Command Line tool with the appRestart←↩

Info and appRestartInfoExport commands.

If the status of a monitored model instance is FAILED, the start sequence of the model instance failed with an
unhandled exception.

Note that the orchestrating model instance might fail as well: this will depend on whether the exception occurred
within its start sequence.

Chapter 5

Data Model Tutorials

• Creating Custom To-Do List

• Validating a Related Record

5.1 Creating Custom To-Do List

Important: To complete this tutorial, you need the Enterprise Edition of PDS and the LSPS Maven
Repository installed.

Typically, the default To-Do list will not cut it in the real world of business and you will require custom business-
related data for a to-do while retaining the related mechanisms, such as, priority of the todo, its allocation, locking,
annotations, delegation, substitution, etc.

Since the Todo is represented by the Todo record which is a system record, you cannot simply add a field to it.
However, you can create a new Record related to the Todo Record and add the business data to this Record: in this
tutorial, we create the TodoItem record with an additional field and a relationship to the Todo record:

• To create instances of TodoItem on runtime, we will create the record in the issueAction parameter of
the User tasks.

• To query the to-do information of a TodoItem record, we will use joins from the TodoItem to the Todo.

Note: The pattern of records related to system records can be applied analogously to other system
records, for example, to extend the data held by Person.

5.1.1 Creating the Data Model

Before you start, create a project:

1. Open the Modeling perspective in your PDS.

2. Go to File -> New -> GO-BPMN Project.

3. In the pop-up enter the project name custom_todo_list_model and click Finish.

66 Data Model Tutorials

Since Todo is a system record and system records cannot be extended directly, you need to create a record that
will represent our todo item with the business data and is related to the Todo system record:

1. Create a module that will hold the data hierarchy:

(a) Go to File -> New -> GO-BPMN Module.

(b) In the popup, do the following:

• Select the custom_todo_list_model project.

• In the Module name field, enter custom_todo_list_data.

• Unselect the executable module option since this module is intended as a module import and never
be instantiated by itself.

(c) Click Finish.

2. Create a data type definition: right-click the module and go to New -> Data Type Definition.

3. Create the shared record with the business data, TodoItem:

(a) Right-click the canvas in the graphical editor and go to New > Shared Record.

(b) Enter the record name TodoItem.

(c) Insert the field priority of type Integer into the TodoItem record.

4. Establish a relationship to the Todo record:

(a) Right-click the canvas in the graphical editor and go to New > Record Import.

(b) In the human module, select Todo (alternatively start typing todo) and click OK.

(c) To create a relationship between TodoItem to Todo, drag the quicklinker from TodoItem to Todo.

(d) Select the relationship and set the properties of the Todo end in the Properties view:

• Name: todo

• Multiplicity: Single (one TodoItem relates to one Todo)

5.1 Creating Custom To-Do List 67

Note: To display the fields and methods of the imported Todo record, right-click the record
and under Compartments select the required items.

5.1.2 Creating the Todo Items

Todos are created when a User Task of a process instance is executed: to create the todo item related to the todo,
create it in the issueAction closure of the User Task: issueAction is executed right after a todo is created and
has the todo created by the User Task as its input parameter.

Let's create a process that will create a Todo and its TodoItem:

1. Create the module that will hold the process:

(a) Right-click your project and go to New -> GO-BPMN module.

(b) In the module name field, enter custom_todo_list_process and click Finish.

(c) Import the custom_todo_list_data module (double-click the module Imports node in the custom_←↩

todo_list_process module).

2. Create the process definition and design the process:

(a) Right-click the custom_todo_list_process module and go to New -> Process Definition.

(b) Enter the name CreateTodoItem and select the BPMN-based process option.

(c) In the process, create a local variable newTodoItem of the TodoItem type (in the Outline view of the
process definition, right-click the root node and select New > Variable). It will hold the new todo item,
so we can pass it to the todo form where we will edit its priority field.

(d) Design a process flow with a User task.

68 Data Model Tutorials

(e) In the Properties of the User task, define the parameters of the task: in the issueAction parameter,
create the TodoItem record over the to-do:

title /* String */ -> "Dummy Submit for Guest",
performers /* Set<Performer> */ -> {getPerson("guest")},
uiDefinition /* UIDefinition */ -> new SubmitForm(newTodoItem) ,
issueAction /* {Todo:void} */ -> { t:Todo -> newTodoItem := new TodoItem(todo -> t)}

Note that the SubmitForm does not exist yet; we will create it in the next step.

Note: If you attempted to change the value of the related to-do directly, for example, on a flow assign-
ment with newTodoItem.todo.title := "";, you will get a validation error since Todo is a
system record and fields of system records cannot be accessed directly.

5.1.2.1 Creating the Form for the To-Do

Create the form that will be used to gather the priority data for the TodoItem and submit the todo:

1. Right-click the custom_todo_list_process module and go to New -> Form Definition.

2. Enter SubmitForm as the name of your form and make sure the Use FormComponent-based UI is se-
lected.

Note: The Use FormComponent-based UI setting defines the module of the Standard Library
that is used to create the form: When the option is selected, the forms module is used. Such
forms are created more like in Vaadin and are a more powerful solution. When not selected the
ui module is used. forms based on the ui module are used. Such forms are event driven and
oriented on users without programming skills.

3. Create the form variable newTodoItemVar of type TodoItem (in the Outline view of the form definition,
right-click the root node and select New > Variable).

4. Create a parametric constructor for the form that initialize the variable to the parameter value (open the form
and display the Methods tab):

public SubmitForm(TodoItem newTodoItem){
newTodoItemVar := newTodoItem

}

5. Back on the Form tab, insert the following components and define their properties in their Properties view:

• Form Layout

• Decimal Field with properties:

– Caption: "Priority:"

– Binding: set to Reference with the value &newTodoItemVar.priority

• Button:

– Text: "Submit"

– Click listener: { e -> Forms.submit()}

../forms-vaadin/index.html
../ui-vaadin/index.html

5.1 Creating Custom To-Do List 69

If you run the model now and the process executes the User task, and creates a todo along with its todo item. You
can set the priority in the Application User Interface in the to-do.

5.1.3 Creating a List of Todo Items

Now we will create a page that will display the list of the todo items that have not been submitted yet (their todo is
alive) and are assigned to the current user.

First, create a query that will retrieve todo items:

1. Right-click the custom_todo_list_data module and go to New -> Query Definition.

2. In the query editor, click Add.

3. On the right, define the query name as getTodoItems, set TodoItem as the record type, and set an
iterator name, for example ti.

4. At this stage, the query returns all TodoItems. Restrict it so it returns only those todo items that are related to
a LIVE todo:

(a) Join the system todo table: select the Join Todo List.

(b) Define the iterator for the returned todos in the Query Todo Iterator, for example t.

(c) In the Todo List Criteria, define an expression that filters the todos from the joined todo list:

70 Data Model Tutorials

//returns todos of the current person:
new TodoListCriteria(person -> getCurrentPerson(),
//exclude interrupted, accomplished, suspended todos:
includeAllStates -> false,
//exclude rejected todos:
includeRejected -> false,
//exclude to-dos allocated by other persons:
includeAllocatedByOthers -> false,
//exclude to-dos of substitutes:
includeSubstituted -> false)

5. Now, the query returns all todo items related to a to-do of the current person. However, only the todo with the
matching id should be returned. Define the condition in the Condition property:

ti.todo.id == t.id

The query is ready and you can create a document with a form that will display the todo items:

1. Create the custom_todo_list_ui non-executable module that will hold the document.

2. Import the custom_todo_list_data module.

3. Create the document that represents the page with the todo items: Right-click the custom_todo_list_ui module
and go to New -> Document Definition. Create a document with the properties:

• Name: todoItemsList

• Title: "My Todo Items"

• UI definition: new ListOfTodoItems()

4. The UI definition does not exist yet, let us create it:

(a) Right-click the custom_todo_list_ui module and go to New -> Form Definition.

(b) Set the form name to ListOfTodoItems and click Finish.

5. In the editor with the form, insert a Vertical Layout.

6. Into the layout, insert the Grid component and define its properties:

(a) Set Data Source to Query and getTodoItems() as its value.

(b) Create Grid Columns with the value provider set to Property path with the respective custom todo item
properties, for example, TodoItem.todo.id, TodoItem.priority.

7. Create a Grid Column that will contain a link which opens the task item:

(a) Set Value Provider to Closure and define the closure that returns the link content below (You need to
use the Closure type since a property path of type Integer cannot use the renderer Link):

{ i:TodoItem -> i.todo.id.toString() }

(b) Set the Renderer to Link.

(c) Below define the navigation of the link:

{ ti:TodoItem -> Forms.navigateTo(
new TodoNavigation(
todo -> ti.todo,
openAsReadOnly -> false
)

)
}

5.1 Creating Custom To-Do List 71

If you haven't done so yet, now is the time to test the modules:

8. Run PDS Embedded Server by clicking the Start Embedded Server button .

9. Generate todos: right-click the custom_todo_list_process module and go to Run As > Model.

10. Upload the document with the todo items list: right-click the custom_todo_list_ui module and go to Upload
As > Model.

11. Create the guest user with all security roles.

12. Open your browser and go to http://localhost:8080/lsps-application, log in as the guest
user

13. Go to Documents and click My Todo Items.

14. Click a link to navigate to the todo.

15. Stop PDS Embedded Server by clicking the Stop Embedded Server button .

5.1.4 Removing the To-Do Navigation from the Menu

Now this is all nice and neat but the user can still access the default To-do List page: so we need to substitute the
To-Do List in the Application User Interface with our to-do item list. To do this, we need to modify the Application
User Interface itself.

First, generate LSPS Application:

http://localhost:8080/lsps-application

72 Data Model Tutorials

1. Go to File > New > Other

2. In the popup dialog, select LSPS Application and click Next.

3. In the updated popup, enter the maven artifact details and click Finish.

For more details about the sources, refer to the custom-application documentation.

Let us remove the default To-Do List item and add our list item to the navigation menu:

1. Since this is Java code, switch to the Java perspective.

2. Remove the To-Do List item:

(a) Create a custom main menu:

i. Create and open the <YOUR_APP>.vaadin.core.AppAppLayout.java class.
ii. Modify the createMainMenu() method so it returns you custom MainMenu implementation.

@Override
protected Component createMainMenu() {
return new AppMainMenu(CONTENT_AREA_ID);

}

(b) Create the custom main menu:

i. Create the AppMainMenu class that extends DefaultMainMenu.
ii. Add the constructor from the DefaultMainMenu (there is a validation warning that the constructor is

missing).
iii. Copy and override the DefaultMainMenu's createMenu() method.
iv. Remove the if statement with navigation item menu of the todo list:

@Override
@SuppressWarnings("unused")
protected void createMenu() {
/*if (ui.getUser().hasRight(HumanRights.READ_ALL_TODO) || ui.getUser().hasRight(HumanRights.READ_OWN_TODO)) {

todoMenuItem = navigationMenu.addViewMenuItem(TodoListView.TITLE, TodoListView.ID, FontAwesome.LIST, todoBadge, null);
}*/
...

(c) Build the application: open the run configuration drop-down menu and click the build launcher.

../custom-application/generatingdefaultapp.html

5.1 Creating Custom To-Do List 73

(d) Run SDK Embedded Server: open the run configuration drop-down menu and click the embedded
server launcher for you application.

Important: Note that this is a different server from PDS Embedded Server we used previously.
PDS Embedded Server is generated on its first launch in the given workspace with the L←↩

SPS Application deployed. SDK Embedded Server is generated when you generate your
application in the lsps-embedded-server project and has your application hot-deployed.

(e) Open the browser and check that the To-Do List item is no longer available in the navigation menu.

5.1.5 Adding the To-Do Items Navigation to the Menu

Now add the navigation item to the custom to-do list:

1. Copy the fully qualified name of the module with the document to the clipboard: right-click the document
definition and select Copy Qualified Name.

2. Add a addDocumentItem call with the document to the createMenu() of AppMainMenu.java: paste
the qualified name of the document to prevent typos.

//navigation item to the todo item document:
if (hasRightToOpenDocument("custom_todo_list_ui::todoItemsList")) {
navigationMenu.addDocumentItem("Todo items", "custom_todo_list_ui::todoItemsList", null, VaadinIcons.ABACUS, null, null);

}

3. Restart the server in debug mode.

4. From the Modeling perspective, upload the custom_todo_list_ui module and run the custom_←↩

todo_list_model module to create some todo items.

5. Check the menu in the browser.

74 Data Model Tutorials

5.1.6 Localizing the Name of a Menu Item

The document menu item is now in the navigation menu but its label contains the ??? characters: these signalize
that the system failed to find the localization string. Let's create the string:

1. Use a localization key as the titleKey parameter in the addDocumentItem() call: navigation←↩

Menu.addDocumentItem("nav.todoitems", "custom_todo_list_ui::listOfTodo←↩

Items", null, FontAwesome.ADN, null, null);

2. Open localization.properties with the default localizations in the com.whitestein.lsps.vaadin.←↩

webapp package (<YOUR_APP>-vaadin project).

3. Add the localization key:

navigation menu items
nav.todoitems = To-do List
nav.documents = Documents
nav.runProcess = Run Model
This is the new key:
nav.itemsList = Todo Items

4. Restart the server.

5.1.7 Excluding the Todo Items Document from Documents

Right now the document with the todo items is accessible not only from the dedicated navigation menu but it is also
available as a document on the Documents page. To remove it, do the following:

1. Create and use your custom AppAppNavigator:

(a) In the AppLspsUI.createNavigator() method, call your navigator:

@Override
protected void createNavigator(ViewDisplay display) {
Navigator navigator = new AppAppNavigator(getUI(), display);

}

(b) Create the AppAppNavigatorClass that extends the DefaultAppNavigator class:

i. Create the inherited constructor:
public AppAppNavigator(UI ui, ViewDisplay display) {

super(ui, display);
}

ii. Override documentsViewClass() to return your document view class:
@Override
protected Class<? extends AppView> documentsViewClass() {
return AppDocumentsView.class;

}

2. Create your implementation of the DocumentsView class (copy the content of the class to App←↩

DocumentsView and adjust the load() method so it excludes the todo list document:

//added property for excluded documents:
private static final String EXCLUDED_DOCUMENT = "custom_todo_list_ui::todoItemsList";
...

~
private void load() {
try {
//Add documents; renamed original documents to allDocuments:
List<DocumentInfo> documents = new ArrayList<>();
List<DocumentInfo> allDocuments = genericDocumentService.getNonParametricDocuments();

5.2 Validating a Related Record 75

~
//checking in the list of all documents for the excluded documents:
for (DocumentInfo document : allDocuments) {
//Added this if to excludes the document from the table:
if (!EXCLUDED_DOCUMENT.equals(document.getId())) {
documents.add(document);

}
}
this.documents.clear();
this.documents.addAll(documents);

} catch (ErrorException e) {
getUI().getAppErrorHandler().showErrorMessage("app.unknownErrorOccurred", e);

}
}

3. Adapt the calculation of documentBadge on documentMenuItem (the blue icon with the number of
available documents).

4. Override the getDocumentBadge() method so it returns your local documentBadge variable.

Simple example of badge calculation

//constant with the document name:
private static final String DOCUMENT_IN_MENU = "custom_todo_list_ui::todoItemsList";
~

@Override
protected void calculateBadges() {
todoBadge = (int) todoService.getTodoCount(new TodoListCriteria());
try {

List<DocumentInfo> nonParametricDocuments = documentService.getNonParametricDocuments();
//exclude of the document from the count:
documentBadge = 0;
for (DocumentInfo documentInfo : nonParametricDocuments) {
if (!DOCUMENT_IN_MENU.equals(documentInfo.getId())) {
documentBadge++;

}
}

} catch (ErrorException e) {
throw new RuntimeException(e);

}
runModelBadge = (int) modelManagementService.getExecutableModulesCount();

}
@Override
protected int getDocumentBadge() {
return documentBadge;

}

5.2 Validating a Related Record

To validate related records of a record (cascade validation), do the following:

1. Define the constraints for the related record.

2. Define the constraint that will trigger the validation of the related records:

• If the relationship is to-one:

(a) Set the record property to the relevant property path, for example, Book.author.
(b) Set the constraint type to RecordValidity.

76 Data Model Tutorials

• If the relationship is to-many:

(a) Set the record property to the relevant property path, for example, Author.books.

(b) Set the constraint type to RecordCollectionValidity.

Important: Make sure the validation does not result in infinite recursive validation (the
relationship record does not validate the parent record).

3. Call the validate() function on the main record.

Example: Underlying data model Constraints

def Author author := new Author(books -> {new Book(title -> null)},
name -> null); validate (author, null, null, null); Since the Author.←↩

books.RecordCollectionValidity constraint defines RecordCollectionValidity, the validate()
checks also the created book constraints and violations on the constraints Author.name.NotNull and
Book.title.NotNull are returned.

Chapter 6

Other Tutorials

• Model Update Examples

• Editable Decision Table

6.1 Model Update Examples

This series of simple tutorials demonstrate how to update the model of running model instances.

Mind that updating models can be very complex: consider using another approach such as agile processes pattern
to avoid the need for model update altogether.

Generally, model update is performed in as follows:

1. Open the PDS and connect to the LSPS Server.

2. Import the original model into your workspace.

3. Import or create the target model into your workspace.

4. Define rules for the model update in the model-update definition.

5. Run the model update with the model-update definition.

6. Unload the modules that are no longer used.

Note: If you are updating Java implementations as well (this is the case when updating to a newer
standard library or to a custom LSPS Application with new custom java implementations,
consider suspending the model instances that use the resources that are modified. Then you can
redeploy the LSPS Application EAR. Note that if you want to run according to both, the original and
target models, your implementations must be backward compatible (in such a case it is not necessary
to suspend the pertinent model instances).

This section contains examples of simple model updates with the following modifications in the target models:

• variable value

• task parameter change

• event change

• data type change

../custom-application/creatingcustomobjects.html

78 Other Tutorials

6.1.1 Updating a Variable Value

Required action: Update a model instance so that a variable value changes to a value derived from its original value.

In the example update, we will introduce the following changes on global variables:

• A variable will be removed.

• A variable will have its value modified to a value derived from the removed variable.

1. Design the source model with a process definition and a variable definition:

(a) Create a module with a global variable definition with the following variables:

• varSet of type Set<String> with the initial value {"old value 1", "old value
2"}

• varString of type String with the initial value "42"

(b) Create a process definition with a None Start Event, a Conditional Intermediate Event, and a Simple
End Event.

(c) Set the Condition parameter of the Conditional Intermediate Event to false to keep the model instance
running so it can be updated.

Figure 6.1 Process

2. Design the target model:

(a) Copy and paste the old module.

(b) Modify the global variables

• Modify varSet to have the initial value {"new value 1", "new value 2"}

• Delete varString

• Create varInt of type Integer with the initial value 1.

3. Create the .muc file:

(a) Right-click the parent project, go to New > Model Update Configuration and follow the instructions.

(b) Open the Variables page in the newly opened editor with your muc file

(c) Adjust the mapping if necessary: Map the new variable definition file to the old variable definition file and
varInt to varString. Mapping of VarSet should be recognized automatically after the variable
definition file is mapped.

(d) Define the transformation expressions on the new variables:

• varSet: {"transformation value"}

• varInt: toInteger(toString(old("varString")))

6.1 Model Update Examples 79

Figure 6.2 The muc file with variables and their transformation expressions

When you perform the model update, the system does the following:

1. First attempts to transform variable values according to their transformation expression.

2. If the expression does not exist, the system performs the transformation defined for the variable data type.

3. If neither the variable transformation expression nor the data type transformation exist, the variable is initial-
ized. This typically applies to variables that were added in the new model.

Note: When updating local variables of processes, sub-processes, and tasks, the update is deter-
mined by the update strategy of the parent element:

• If the strategy of the parent element is continue, the parent context is preserved. The execution
continues in the old transformed context: Its local variables are transformed as defined by their
transformation expression.

• If the strategy of the parent element is restart, the parent context is dropped and a new context is
created: any local variables are discarded and new variables are initialized. The transformation
expression on the variables is not applied.

To upload the resources and perform the model update, do the following:

1. Make sure your server with the Execution Engine, possibly the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

2. Upload the model to the server and create its model instance: In the GO-BPMN Explorer, right-click the
source module and go to Run As > Model.

3. Upload the target model to the server: In the GO-BPMN Explorer right-click the module and go to Upload As
> Model.

4. Switch to the Management perspective.

5. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

80 Other Tutorials

6. In the Model Instances view, open the detail of the source-model instance and check the values of the global
variables.

Figure 6.3 Detail of the old model with old global variables

7. Perform the update:

(a) In the Model Instances view, click the Model Update ().

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, check that the model instance is listed and selected in the Filtered Model
Instances section and click Next. Check the summary of the model update and click Finish.

(d) Refresh the Model Instances view: The model instance should be in the Updated status.

(e) Display the detail of the model instance.

Figure 6.4 Detail View of the Updated Model Instance with New Global Variables

Note that the variables hold now the values defined by their transformation expression.

6.1 Model Update Examples 81

6.1.2 Updating a Task Parameter

Required action: Perform model update to a new model with modified task parameters and have a post process log
the information about the update.

For this scenario, you should consider whether the task can be instantiated at the moment the model update is
started or when the model instance is started after update:

• A task cannot be instantiated if it is atomic since it cannot be holding the token at that moment. Such tasks
include the Log, Assign, Lock Task, etc. Changes on such tasks are considered as a removal of the old
task and adding of a new task.

• A task can be instantiated when its task type requires asynchronous or multi-step execution, or waits for
an event. These are tasks that can hold an execution token and become a transaction border. Such
task types include the User, HttpCall, Web Service Client, and Server Tasks of the Standard Library and
possibly custom tasks.

For these tasks, you need to define their transformation strategy so that if such a task is running at the
moment when you pause the process before the model update, or it will be running after the model instance
starts after model update, the task is handled according to the transformation strategy. The strategy can be
either restart or continue:

– If the strategy is set to restart, the task ignores its old context and restarts as a new task.

– If the strategy is set to continue, the task continues in its old context.

Let us update the Performers and Form parameter of a User Task. We will change the following:

• Perfomers

{anyPerformer()} will be changed in the new model to {getPerson("admin")}

• Underlying Form

The form content will be changed in the new model.

We will consider the outcome of both the restart and continue strategy.

Proceed as follows:

1. Design the old model as a module with a process and define its form definition with arbitrary content.

../modeling-language/transactioninmodelinstances.html

82 Other Tutorials

Figure 6.5 Old model

2. Design the new model: Copy and paste the old module and modify the Performers parameter of the User
Task and modify the content of its form definition.

6.1 Model Update Examples 83

Figure 6.6 New model

3. Create the .muc file: Right-click the parent project, go to New > Model Update Configuration and follow
the instructions.

4. Open the .muc file and on the Processes page locate the task parameter: The transformation strategy is set
to Continue by default.

84 Other Tutorials

Figure 6.7 Model update configuration with the parameter change

Note that no changes on the form are detected since forms do not require any special handling on model
update but are simply substituted with their new version.

5. Define a post process on the module that will log a message:

(a) In the .muc file, right-click the new module and click Create Post-process.

i. On the opened page, design the post process with a Log Task.

ii. Define the message parameter of the Log Task.

6.1 Model Update Examples 85

Figure 6.8 Post-Process

Make sure the transformation strategies on the module, process, and task of your muc file are set
to Continue. This is the default transformation strategy.

To perform the model update, do the following:

1. Make sure your LSPS server, possibly the PDS or SDK Embedded Server, is running and your PDS is
connected to it.

2. Upload the model to the server and create a model instance of the old model: In the GO-BPMN Explorer,
right-click the old module and go to Run As > Model.

3. Upload the new model to the server: In the GO-BPMN Explorer right-click the new module and go to Upload
As > Model.

4. Switch to the Management perspective.

86 Other Tutorials

Figure 6.9 Management perspective with an instance of the old model

5. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

6. Create a new user guest with all the security roles.

7. Go to the Application User Interface and lock the generated to-do:

(a) Open a browser and go to http://<YOUR_SERVER_DOMAIN>/lsps-application/

(b) Log in as the user guest.

(c) Click TO-DO LIST.

(d) Open the to-do, which was generated by the old model instance.

(e) With the to-do content displayed, log out, so the guest user locks the to-do.

8. Back in the Management perspective, perform the update:

(a) In the Model Instances view, click the Model Update ().

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, check that the model instance is listed and selected in the Filtered Model
Instances section and click Next. Check the summary of the model update and click Finish.

(d) Refresh the Model Instances view: The model instance should be in the Updated status. If the model
instance is in the Pre-processes state, hit the Refresh button again.

If the model instance is in the Pre-processes state, hit the Refresh button again. The model instance
is still suspended: If you check the to-do list of the guest user, the to-do is not available since the user
task is suspended.

http://

6.1 Model Update Examples 87

(e) Check the Log view for the log message of the post-process.

Figure 6.10 Log view with the post-process log message

(f) Select the model instance and click Resume () button. The model instance becomes Running.

9. Go to the Application User Interface as the guest user. The to-do list of the guest user still contains the locked
to-do in spite of the fact that the new model allows only the admin user as the to-do performer. However, its
content already follows the form of the new model.

Set the transformation strategy on the User Task of your muc file to Restart. Leave the strategy on the parent
process and module set to Continue and perform the model update anew. The to-do will be discarded.

Note: If you set the strategy on the parent process and module to Restart, the entire process/module
will be discarded on update and a new process/module will be instantiated.

6.1.3 Updating an Event Type

Required action: Update a model instance so that its None Start Event is changed to a Conditional Start Event and
Timer Intermediate Event changes in a Conditional Intermediate Event.

A change of an event type does not allow to define any pre- or post-processing on the event, or a transformation
expression since the change is detected as a removal of the old event and addition of the new event. If required,
define model-update processes on the parent modules and process.

1. Design the old model with a process definition:

88 Other Tutorials

(a) Create a module with the old process.

(b) Create a process definition with a None Start Event, a Conditional Flow Event, and a Simple End Event.

(c) Set the Delay parameter of the Timer Intermediate Event, for example, to new Duration(years
-> 1).

2. Design the new model: copy and paste the old module, change the None Start Event to a Conditional Start
Event and the Timer Intermediate Event to Conditional Intermediate Event, and set their condition, for exam-
ple, to false.

3. Create the .muc file:

(a) Right-click the parent project, go to New > Model Update Configuration and follow the wizard.

(b) Open the .muc file and on the Process page and check the element mapping.

The change mapping might be incorrect as shown in Model Update Configuration with Incorrect Map-
ping: The newUpdateEventType Process is recognized as a new Process, while we want it to be
mapped to the oldUpdateEventType Process.

Figure 6.11 Model Update Configuration with Incorrect Mapping

(c) Rigth-click the element and adjust the mapping if needed.

6.1 Model Update Examples 89

Figure 6.12 Model Update Configuration with Corrected Mapping

The transformation strategies on the Process is set to Continue. This is the default transformation
strategy. If we used the Restart strategy, the process would be restarted on update if on the element at
the given moment.

To perform the model update, do the following:

1. Make sure your server with the Execution Engine, possibly on the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

2. Upload the model to the server and create a model instance of the old model: In the GO-BPMN Explorer,
right-click the old module and go to Run As > Model.

3. Upload the new model to the server: In the GO-BPMN Explorer right-click the new module and go to Upload
As > Model.

4. Switch to the Management perspective.

5. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

6. Switch to the Management perspective.

7. Refresh the Module Management and Model Instances view and check that the old model is instantiated and
the new model uploaded.

8. In the Model Instances view, open the detail of your old model and check the execution diagram of the process.

Figure 6.13 Execution Diagram of the Old Model Instance

90 Other Tutorials

9. Perform the update:

(a) In the Model Instances view, click the Model Update () button.

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, do not apply any filtering, just click Next so that any available instances of the
old model are updated (in this case, exactly one model instance is running).

(d) Check the summary of the model update and click Finish.

(e) Refresh the Model Instances view: The model instance should be in the Updated status.

(f) Click the Continue () button to trigger the execution of the updated model instance.

10. Check the execution diagram of the updated model instance.

Figure 6.14 Execution Diagram of the Updated Model Instance

Note that the execution remains on the new Conditional Event.

Now set the transformation strategies on the process to Restart so the Process is restarted on update if on the
event. Perform model update as described above: The execution remains on the new Conditional Start Event since
the process instance was restarted.

6.1.4 Updating a Data Type

Required action: Update a model instance with a changed data type of a record property.

Important: It is not recommended to update shared records via model update since changes on shared
records are reflected on the database. While it is safe to add a new field to a shared record and remove
not-nullable fields using model update, modifications to fields, such as modification of their data types,
might result in corrupted database schema or data loss. It is recommended to migrate the database
directly, not via update of shared records.

When you are updating a model instance to a model with changed non-shared record types, all record instances
will be updated according to the transformation expression.

We will update a model instance's data hierarchy as follows:

6.1 Model Update Examples 91

Figure 6.15 Old and new data type models

The data type update will involve the following changes:

• The ISBN record is removed: No further actions are required.

• The Book.isbn field is changed from the ISBN type to String: The new isbn field must concatenate and format
the old instance of ISBN for the given Book instance.

• The keyword field is changed from a string to a list of strings and renamed to keywords: The new keywords
field should import the old keyword string.

1. Design the old model with a process definition, variable definition, and data type definition as shown in Old
model for data type update:

(a) Create a module with the old data type hierarchy with the Book and ISBN records.

(b) Create a global variable definition with a bookSet variable of type Set<Book> and a book variable of
type Book.

(c) Create a process definition with a None Start Event, a Conditional Flow Event, and a Simple End Event.

(d) On the flow from the None Start Event define an assignment expression that creates three Book in-
stances assigned to the bookSet global variable:

bookSet := {
new Book(title -> "Brave New World",

isbn -> new ISBN(ean -> 978, group -> 1, publisher -> 85399, title -> 393, checkDigit -> 0),
keyword -> "science fiction"),

92 Other Tutorials

new Book(title -> "Catch-22",
isbn -> new ISBN(ean -> 978, group -> 1, publisher -> 4055, title -> 387, checkDigit -> 7),
keyword -> "army"),

book := new Book(title -> "Brave New World",
isbn -> new ISBN(ean -> 978, group -> 1, publisher -> 85399, title -> 393, checkDigit -> 0),
keyword -> "science fiction")

}

(e) Set the Condition parameter on the Conditional Flow Event to false. The Conditional Flow Event will
hold the execution so that the process creates the record instances and then remains running.

Figure 6.16 Old model

2. Design the new model: copy and paste the old model, modify the data type model, and remove the assign-
ment expression on the flow.

3. Create the .muc file:

(a) Right-click the parent project, go to New > Model Update Configuration and follow the wizard.

(b) Open the .muc file and on the Data Types page and define the transformation expressions for the isbn
record field and the new keywords field:

• isbn:
toString(old("isbn.ean")) + "-" +
old("isbn.group") + "-" +
old("isbn.publisher") + "-" +
old("isbn.title") + "-" +
old("isbn.checkDigit")

This expression will take individual fields from the old record and concatenate them into a new
hyphenated isbn value.

6.1 Model Update Examples 93

• keywords: [old("keyword")] This expression will take the keyword string and add it to a new
list of keywords.

Figure 6.17 Model Update Configuration with the Data Type Changes

To perform the model update, do the following:

4. Make sure your server with the Execution Engine, possibly on the PDS or SDK Embedded Server, is running
and your PDS is connected to it.

5. Upload the model to the server and create a model instance of the old model: In the GO-BPMN Explorer,
right-click the old module and go to Run As > Model.

6. Upload the new model to the server: In the GO-BPMN Explorer right-click the new module and go to Upload
As > Model.

7. Switch to the Management perspective.

8. Refresh the Module Management and Model Instances view and check that both models are uploaded and
the source model is instantiated.

9. In the Model Instances view, open the detail of your old model and check the execution diagram of the process.

94 Other Tutorials

Figure 6.18 Detail of the Old Model with Old Global Variables

10. Perform the update:

(a) In the Model Instances view, click the Model Update () button.

(b) In the Model Update dialog window, provide the path to your muc file in the Configuration file field and
click Next.

(c) In the refreshed dialog, do not apply any filtering, just click Next so that any available instances of the
old model are updated (in this case, exactly one model instance is running).

(d) Check the summary of the model update and click Finish.

(e) Refresh the Model Instances view: The model instance should be in the Updated status.

(f) Select the model instance and click Resume (). The model instance becomes Running.

11. Check the Log view for the log message of the post-process.

Figure 6.19 Detail View of the Updated Model Instance with New Global Variables

6.2 Editable Decision Table 95

The variables hold values of the new data types: the record values were transformed according to the transformation
expression defined for the data types.

6.2 Editable Decision Table

Required result: Decision table for resolution of employee position level based on their years of experience that is
persisted and can be edited from the Process Application.

You can download an example implementation here. To import it to your workspace, create a GO-BPMN project;
right-click the project and go to Import > Archive file; select only the positionLevelResolver directory,
which is a module, and click Finish.

1. Import the dmn module into your module: In the GO-BPMN Explorer, right-click your module, click Module
Imports, click Add and double-click dmn.

2. Design the decision table:

(a) Create the decision table definition: right-click the module, go to New -> Decision Table Definition,
enter the file name and click Finish.

(b) Keep the default FIRST hit policy and LSPS as the expression language for the business rules.

Note: While you can use SFEEL as the expression language for the business rules, it restricts
the options, such as, using the resources of the Standard Library and accessing the contexts.

(c) Define the input parameter with the number of years of experience:

i. Rename the default input parameter to yearsOfExperience.
ii. Set its data type to Integer.

(d) Define the output with position level:

i. Rename the default output parameter to level.
ii. Set its data type to String.
iii. Define its options as Strings of the possible level, such as, "Associate Engineer", "←↩

Engineer", "Senior Engineer", "Principal Engineer".
iv. Add rules for different yearsOfExperience input: click + below the table and define the age ranges

as expressions.

Now you need to create a form, and a document with the form so you can access it from the Process
Application:

1. Create a Form with the Decision Table component:

(a) Create a form definition: right-click the module, go to New -> Form Definition, enter the name
PositionDecisionTableForm and click Finish.

(b) Create local variable positionLevelDecisionTableVar of the type of your decision table: it will hold the
decision table and initialize it to the stored decision table if such a table exists.

(c) Initialize the positionLevelDecisionTableVar, for example, in the form constructor:

public PositionDecisionTableForm(){
positionLevelDecisionTableVar := new positionLevelResolver(false);
//if cannot load the decision table, create a new one and persist it:
if positionLevelDecisionTableVar.load("storedPositionTable") == false then

positionLevelDecisionTableVar := new positionLevelResolver(true);
positionLevelDecisionTableVar.save("storedPositionTable")

end
}

(d) Design the form:

i. Insert a Vertical Layout component.

../media/tutorials/models/editableDecisionTable.zip

96 Other Tutorials

ii. Insert a Decision Table Editor component into the layout and set its properties as follows:

• Decision table: positionLevelDecisionTableVar

• Rights: [DecisionTableRights.CAN_EVERYTHING]

iii. Insert a Button that will persist the changes on the decision table: this is performed by call-
ing the save(<ID>) method on the table. The click listener closure could be set to some-
thing like { e -> positionLevelDecisionTableVar.save("storedPosition←↩

Table") } Make sure you are saving the table under the same String ID as you are using when
loading it in the form constructor.

(e) Create a document with the form as its UI definition.

2. Create the PositionEvaluator form definition for the years-of-experience input and evaluation with the
following:

• Local variable positionLevelDecisionTable of the type of your decision table.

Initialize the variable from the constructor of the form to the persisted decision table, for example:

public PositionEvaluator(){

positionLevelDecisionTable := new positionLevelResolver(false);

if (positionLevelDecisionTable.load("storedPositionTable") == false) then
positionLevelDecisionTable := new positionLevelResolver(true);

end;
}

• A Decimal Field component for input of years of experience with the ID yoe and the binding set to a
valid value

• A Label component with the ID result that will display the position level

• Button to request the level evaluation on click and set it as the value of the result field

//example click listener that returns the decision,
//writes it to the result field:
{ e ->
if (yoe.getValue()== null) then

result.setValue("Enter an integer.")
else

result.setValue(positionLevelDecisionTable.evaluate(yoe.getValue() as Integer))
end
}

(a) Create a document with the UI definition set to new PositionEvaluator()

3. Run a LSPS Embedded Server and upload the module.

4. Test the documents:

(a) Log in to the Process Application in your browser.

(b) In the document with the position evaluator, enter the years-of-experience data and get the resulting
level.

(c) Now open the document with the decision table, and edit the values and add a new rule.

(d) Open the evaluator document again and enter the years-of-experience data and get the updated result-
ing level.

Chapter 7

LSPS Application on a Local Server and Database

In this tutorial, you set up a MySQL database with LSPS tables, set up the WildFly server, deploy the LSPS Appli-
cation to the WildFly server, and connect to the server from PDS. We assume you are on Linux.

Important: This environment is not intended for production. For simplicity, resources are set up in the
home directory and no security aspects are taken into consideration. More detailed deploy instructions
are available in the Deployment Guide.

You will need the following:

• MySQL 8.0

• JDBC driver for MySQL

• WildFly 16

• lsps-runtime (requires licensed)

7.1 Setting up Local MySQL Database

1. Install MySQL: make sure to perform this as the administrator on Windows.

2. Log in as root user:

mysql -u root -p

3. Create LSPS database and user:

CREATE USER ’lsps’ IDENTIFIED BY ’lsps’;
CREATE DATABASE lsps DEFAULT CHARACTER SET utf8mb4 DEFAULT COLLATE utf8mb4_unicode_ci;
ALTER USER ’lsps’@’localhost’ IDENTIFIED BY ’lsps’
GRANT XA_RECOVER_ADMIN ON *.* TO ’lsps’@’%’;
SET GLOBAL log_bin_trust_function_creators = 1;
quit

4. In the [mysqld] section of the mysqld.conf file, add max_allowed_packet=512M. On Windows, de-
fine this in your C:\ProgramData\MySQL\MySQL Server 8.0\my.ini in the mysql installation
directory.

../server-deployment/index.html

98 LSPS Application on a Local Server and Database

$ cat /etc/mysql/mysql.conf.d/mysqld.cnf |grep -E "(max_allowed|default_time_zone)"
max_allowed_packet= 512M
default_time_zone=+01:00

5. Initialize the database with the lsps-db-migration-lsps tool from lsps-runtime/cli-tools.

java -jar lsps-db-migration-lsps-<VERSION>-full.jar --databaseUrl jdbc:mysql://localhost/lsps \
--user lsps --password lsps

Initialized Database

mysql> USE lsps;
Database changed
mysql> SHOW TABLES;
+--------------------------------+
| Tables_in_lsps |
+--------------------------------+
| LSPS_ACTIVE_USERS_TRACK |
| LSPS_BINARY_DATA |
| LSPS_BINARY_DATA_METADATAS |
| LSPS_DASHBOARD_TABS |
...

7.2 Setting up Local WildFly

1. Set up JAVA_HOME and add JAVA_HOME/bin to PATH.

export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export PATH=$JAVA_HOME/bin:$PATH

2. Download WildFly and extract it.

~$ #we use home directory; on linux consider /opt
~$ unzip Downloads/wildfly-16.0.0.Final.zip
~$ mv wildfly-16.0.0.Final/ wildfly

3. Set up data source for the MySQL database:

(a) Download and add the MySQL JDBC driver:

~$ mkdir -p wildfly/modules/com/mysql/main
~$ cp Downloads/mysql-connector-java-\<VERSION>.jar wildfly/modules/com/mysql/main/mysql-connector-java.jar

(b) Configure the driver in wildfly/modules/com/mysql/main/module.xml.

~$ cat wildfly/modules/com/mysql/main/module.xml
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>

<resource-root path="mysql-connector-java.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>

</dependencies>
</module>

(c) Add the authentication jar:

~$ mkdir -p wildfly/modules/com/whitestein/lsps/security/main
~$ cp ~/Downloads/lsps-runtime/lsps-security-jboss-<VERSION>.jar

wildfly/modules/com/whitestein/lsps/security/main/lsps-security-jboss.jar

(d) Configure the authentication module:

7.2 Setting up Local WildFly 99

cat wildfly/modules/com/whitestein/lsps/security/main/module.xml
<module xmlns="urn:jboss:module:1.0" name="com.whitestein.lsps.security">
<resources>
<resource-root path="lsps-security-jboss.jar"/>

</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
<module name="org.picketbox" />

</dependencies>
</module>

4. Create the admin user for WildFly:

~$./wildfly/bin/add-user.sh -u admin -p admin

5. Set up profile configuration in wildfly/standalone/configuration/standalone-full.xml
(The file configured as instructed below is available here:

• Add LSPS_DS transaction datasource that connects to your lsps database with the driver:

<datasources>
<!-- ADDED: -->
<xa-datasource jndi-name="java:/jdbc/LSPS_DS" pool-name="LSPS_DS" enabled="true" use-java-context="false">

<driver>mysqlxa</driver>
<xa-datasource-property name="URL">jdbc:mysql://localhost:3306/lsps?useUnicode=true&characterEncoding=utf-8</xa-datasource-property>
<security>

<user-name>lsps</user-name>
<password>lsps</password>

</security>
<transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>

<xa-pool>
<min-pool-size>10</min-pool-size>
<max-pool-size>20</max-pool-size>
<prefill>true</prefill>

</xa-pool>
</xa-datasource>
<drivers>

<driver name="mysqlxa" module="com.mysql">
<xa-datasource-class>com.mysql.cj.jdbc.MysqlXADataSource</xa-datasource-class>

</driver>
</drivers>

</xa-datasource>

• Set the datasource of the default bindings of urn:jboss:domain:ee:4.0 to LSPS_DS

<default-bindings context-service="java:jboss/ee/concurrency/context/default" datasource="java:/jdbc/LSPS_DS" ...

• Set up the security lspsRealm.

<subsystem xmlns="urn:jboss:domain:security:2.0">
<security-domains>

<security-domain name="lspsRealm" cache-type="default">
<authentication>

<login-module code="com.whitestein.lsps.security.jboss.LSPSRealm" flag="required" module="com.whitestein.lsps.security">
<module-option name="dsJndiName" value="/jdbc/LSPS_DS"/>

</login-module>
</authentication>

</security-domain>

• Prolong the locking isolation on the web cache container:

<cache-container name="web" default-cache="passivation" module="org.wildfly.clustering.web.infinispan">
<local-cache name="passivation">
<locking isolation="REPEATABLE_READ" acquire-timeout="600000"/>

• Add mail session LSPS_MAIL:

../media/tutorials/standalone-full.xml

100 LSPS Application on a Local Server and Database

<mail-session name="lspsmail" jndi-name="java:jboss/mail/LSPS_MAIL">
<smtp-server outbound-socket-binding-ref="mail-smtp"/>

</mail-session>

• Configure JMS:

– Enable persistence on jms <subsystem xmlns="urn:jboss:domain:messaging-activemq←↩

:6.0">:
<subsystem xmlns="urn:jboss:domain:messaging-activemq:6.0">
<server name="default" persistence-enabled="true">

– Add queue and topic:
<jms-queue name="LSPS_QUEUE" entries="java:jboss/jms/LSPS_QUEUE"/>
<jms-topic name="LSPS_TOPIC" entries="java:jboss/jms/LSPS_TOPIC"/>

6. Adjust JAVA_OPTS:

• On Linux, in wildfly/bin/standalone.conf:

~$ cat wildfly/bin/standalone.conf
if ["x$JBOSS_MODULES_SYSTEM_PKGS" = "x"]; then

JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman"
fi
if ["x$JAVA_OPTS" = "x"]; then

JAVA_OPTS="-Xms64m -Xmx800M -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=512m -Djava.net.preferIPv4Stack=true"
JAVA_OPTS="$JAVA_OPTS -Djboss.server.default.config=standalone-full.xml"
JAVA_OPTS="$JAVA_OPTS -Dorg.eclipse.emf.ecore.EPackage.Registry.INSTANCE=org.eclipse.emf.ecore.impl.EPackageRegistryImpl"
JAVA_OPTS="$JAVA_OPTS -Dorg.apache.el.parser.COERCE_TO_ZERO=false"
JAVA_OPTS="$JAVA_OPTS -Dcom.whitestein.lsps.vaadin.ui.debug=true"

else
echo "JAVA_OPTS already set in environment; overriding default settings with values: $JAVA_OPTS"

fi

• On Windows, add at the end of wildfly/bin/standalone.conf.bat:

set "JAVA_OPTS=-Xms64m -Xmx800M -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=512m -Djava.net.preferIPv4Stack=true"
rem # ADD THE FOLLOWING:
set "JAVA_OPTS=%JAVA_OPTS% -Djboss.server.default.config=standalone-full.xml"
set "JAVA_OPTS=%JAVA_OPTS% -Dorg.eclipse.emf.ecore.EPackage.Registry.INSTANCE=org.eclipse.emf.ecore.impl.EPackageRegistryImpl"
set "JAVA_OPTS=%JAVA_OPTS% -Dorg.apache.el.parser.COERCE_TO_ZERO=false"

7. Deploy the ear with LSPS Application: here we deploy the default ear from lsps-runtime.

cp ~/Downloads/lsps-runtime/lsps-application-3.2.ear ~/wildfly/standalone/deployments/

8. Start the server:

~/wildfly/bin$./standalone.sh

7.3 Connecting to Local WildFly from PDS

To connect your PDS to the server, do the following:

1. In the Modeling perspective of PDS, go to Server Connection > Server Connection Settings

2. In the dialog, click Add.

3. Enter the connection properties and test the connection.

7.3 Connecting to Local WildFly from PDS 101

4. Make sure the connection is selected in the Server Connections.

5. In the status bar, check that the connection is active.

Now you can use the management perspective to "communicate" with the LSPS Application on your
server.

../management/managementperspective.html

102 LSPS Application on a Local Server and Database

	1 Main Page
	2 Forms Tutorials
	2.1 Chart (forms)
	2.1.1 Creating a Donut Chart
	2.1.2 Creating a Bar Chart
	2.1.2.1 Setting the Category as X Axis Values

	2.1.3 Creating an Area Chart
	2.1.3.1 Creating an Area Chart with Time X Axis

	2.1.4 Creating a Line Chart

	2.2 Validating a Record from a Form
	2.2.1 Log Process

	2.3 CRUD Grid
	2.3.1 Creating Database Data
	2.3.2 Creating the Form
	2.3.3 Adjusting Presentation
	2.3.4 Creating the Document

	2.4 Validation of Multiple Components
	2.5 Editing Data in a Popup with Conflict Check
	2.5.1 Displaying the Applicant List
	2.5.2 Displaying and Editing Applicant Details
	2.5.3 Creating a New Applicant

	2.6 Filter over Grid and Table with a Custom Data Source
	2.6.1 Implementing a Custom Data Source
	2.6.2 Creating the Form

	2.7 Icon in a forms::Grid

	3 UI Forms Tutorials
	3.1 Editable Table
	3.2 Table with Derived Values
	3.3 Calendar with Adding Entries Functionality
	3.4 Pop-up with Save and Cancel Buttons

	4 Process Tutorials
	4.1 Restartable Processes with Start Monitoring
	4.1.1 Designing a Restartable Process

	4.2 Agile Processes
	4.2.1 Base
	4.2.2 Skipping
	4.2.3 Deactivation
	4.2.3.1 Summary

	4.2.4 Activation

	4.3 Creating a Model Instance from Document and Navigating to its To-Do on Submit
	4.4 Monitor the Start of Model Instances
	4.4.1 Monitoring the Start of Model Instances
	4.4.2 Defining Finish of the Start Sequence
	4.4.3 Defining Number of Expected Model Instances
	4.4.4 Checking the Start Progress of Model Instances

	5 Data Model Tutorials
	5.1 Creating Custom To-Do List
	5.1.1 Creating the Data Model
	5.1.2 Creating the Todo Items
	5.1.2.1 Creating the Form for the To-Do

	5.1.3 Creating a List of Todo Items
	5.1.4 Removing the To-Do Navigation from the Menu
	5.1.5 Adding the To-Do Items Navigation to the Menu
	5.1.6 Localizing the Name of a Menu Item
	5.1.7 Excluding the Todo Items Document from Documents

	5.2 Validating a Related Record

	6 Other Tutorials
	6.1 Model Update Examples
	6.1.1 Updating a Variable Value
	6.1.2 Updating a Task Parameter
	6.1.3 Updating an Event Type
	6.1.4 Updating a Data Type

	6.2 Editable Decision Table

	7 LSPS Application on a Local Server and Database
	7.1 Setting up Local MySQL Database
	7.2 Setting up Local WildFly
	7.3 Connecting to Local WildFly from PDS

