
Living Systems® Process Suite

Expression Language

Living Systems Process Suite Documentation

3.6
Mon Nov 1 2021

Whitestein Technologies AG | Hinterbergstrasse 20 | CH-6330 Cham
Tel +41 44-256-5000 | Fax +41 44-256-5001 | http://www.whitestein.com

Copyright © 2007-2021 Whitestein Technologies AG
All rights reserved.

Copyright © 2007-2021 Whitestein Technologies AG.

This document is part of the Living Systems® Process Suite product, and its use is governed by the corresponding
license agreement. All rights reserved.

Whitestein Technologies, Living Systems, and the corresponding logos are registered trademarks of Whitestein
Technologies AG. Java and all Java-based trademarks are trademarks of Oracle and/or its affiliates. Other company,
product, or service names may be trademarks or service marks of their respective holders.

Contents

1 Expression Language 1

2 Expressions 3

2.1 Chaining Expressions . 3

2.2 Block . 3

2.3 Literals . 4

3 Data Types 5

3.1 Casting . 5

3.2 Object . 6

3.3 void . 6

3.4 Simple Data Types . 6

3.4.1 Binary . 6

3.4.2 String . 6

3.4.3 Boolean . 7

3.4.4 Integer . 7

3.4.5 Decimal . 8

3.4.6 Date . 9

3.4.7 Local Date . 9

3.5 Complex Data Types . 9

3.5.1 Collections . 10

3.5.1.1 List . 10

3.5.1.2 Set . 11

3.5.2 Map . 11

3.5.3 Reference . 12

3.5.4 Closure . 12

3.5.5 User-Defined Record . 13

3.5.5.1 Methods . 14

3.5.5.2 Constructors . 16

3.5.6 Property Path . 17

3.5.7 Property . 18

3.5.8 Type . 18

3.5.9 Enumeration . 18

3.5.10 Null . 19

iv CONTENTS

4 Operators 21

4.1 Assignment Operator . 21

4.2 Arithmetic Operators . 21

4.3 Compound-Assignment Operators . 22

4.4 Logical Operators . 22

4.5 Comparison Operators . 22

4.6 Concatenation . 23

4.7 Reference and Dereference Operators . 24

4.8 Inclusion Operator . 24

4.9 Namespace Operator . 24

4.10 Selector Operator . 25

4.11 Ternary Conditional . 25

4.12 Null-Coalescing Operator . 25

4.13 Access Operator . 26

4.14 Safe-Dot Operator . 26

4.15 Cast Operator . 26

4.16 Evaluation Order . 27

5 Comments 29

6 Local Variables 31

7 Controlling Flow 33

7.1 Branching . 33

7.1.1 if-then-end . 33

7.1.2 if-then-else-end . 33

7.1.3 if-then-elsif-end . 34

7.1.4 if-then-elsif-then-else-end . 34

7.1.5 switch . 34

7.2 Looping . 35

7.2.1 for . 35

7.2.2 foreach . 35

7.2.3 while . 36

7.2.4 break . 36

7.2.5 continue . 36

CONTENTS v

8 Exception Handling 37

8.1 Throwing Exceptions . 37

8.2 Catching Exceptions . 38

8.3 Built-in Errors . 39

9 Functions 41

9.1 Functions Implemented by a Java Method . 42

9.2 Function Annotations . 42

9.3 Calling Functions . 42

10 Model Elements 45

11 Reserved Words 47

Chapter 1

Expression Language

The LSPS Expression Language is a language used in models of the Living Systems® Process Suite to define
element properties, definition implementations, assignments, etc. As such, it provides support for object-oriented
and functional programming.

Note that it is not a full-fledged programming language and it is not possible to define models exclusively in the
LSPS Expression Language; the language is adapted to support your modeling efforts.

For example, you design a BPMN process with a Log task, you define the log message as an expression or expres-
sion block that results in a String in the Log property:

"Process " + processID + " started."

This expression uses String literals "Process " and " started", and the variable processID. On runtime, the system
fetches the value of processID and concatenates the strings.

However, you cannot design the process flow with the Start Event and Log task in the Expression Language; For
this purpose, you will use constructs of the GO-BPMN Modelling Language.

../modeling-language/index.html

2 Expression Language

Chapter 2

Expressions

An expression is a combination of keywords, operators, and literals, and names of data types, variables, model el-
ements, functions and methods. It always returns its resulting value. For example, "Hello " + getWorld()
concatenates the strings, "Hello " and the string returned by the getWorld() function call, and returns the con-
catenation.

//while names with whitespaces are strongly discouraged,
//such names must be wrapped in single quotes:
def Integer ’my number’ := 1;
def String var := "hello";
//expression returns the right side "hello":

2.1 Chaining Expressions

To chain multiple expression into a single expression, connect them with a semi-colon or a new line. Such a
chained expression returns the return value of the last expression in the chain. Intermediary return values of the
other chained expressions are ignored.

def String varString; varString := "Hello" //two expressions chained by a semi-colon (;)
varString:=varString + "World" //an expression chained by a new line

2.2 Block

An expression block is an expression with its own contexts.

Expression blocks follow the visibility rules of contexts: the data in an expression block, such as, an expression
variable, cannot be access from outside of the block.

The if, then, else, switch, foreach, while, for content represent an expression block. You can create
an expression block explicitly as well: start the block with the begin keyword and finish it with the end keyword.

begin
//declaration of an expression variable:
def Boolean visibility := true

//beginning a codeblock
begin
//declaration of an expression variable in the block (not available out of the block):
def Boolean visibility := false;
visibility == false;

end;
visibility == true;
end;

4 Expressions

2.3 Literals

Literals represent fixed values. The notation of literals depends on the data type they represent. The notation is
documented in Data Types.

Chapter 3

Data Types

The LSPS Expression Language is a statically typed language: That means that all values are of a given data type
which does not change on runtime: If you create a String literal it cannot spontaneously act as an Integer; When
you declare a local string variable, it can only reference a string value, etc.

Data types are part of the data type hierarchy with the Object data type as the root of the tree with the sole exception
being the void type. Depending on their position in the hierarchy, they inherit properties from each other: one type
becomes the supertype of another type. An object of a data type can be used anywhere where you can use its
super type. For example, you can assign a variable of type Decimal also a value of type Integer, since Integer is a
subtype of Decimal. These relationships apply to built-in as well as custom data types in a hierarchy.

Built-in data types create the basic data type hierarchy:

Figure 3.1 Built-in data type hierarchy

All data types are part of the data type hierarchy with the Object data type as the root of the tree with the sole
exception being the void type.

3.1 Casting

Casting takes place when you change the type of a value to another type. When "widening" a type, that is changing
a value of a subtype to its supertype, the type change occurs automatically. When "narrowing" a type, you need to
cast the type explicitly:

<objectName> as <newObjectType>

person as NaturalPerson

You can check the type of an object with the instanceof operator.

Note: Alternatively, you can use the cast() function of the Standard Library, for example, cast(o,
type(D))

6 Data Types

3.2 Object

The Object data type is the super type of all data types and therefore the only data type without a supertype. It is
represented by java.lang.Object. Therefore if you want to allow any data type, for example, as a parameter, use the
Object data type. It is represented by the java.lang.Object class. All objects can hold the null value.

3.3 void

The void type is used as the return value of methods, functions, and closures that do not return any value.

3.4 Simple Data Types

Simple data types contain values without further data type structuring.

3.4.1 Binary

Objects of binary data type are typically used to hold binary data when downloading and uploading files, or working
over binary database data.

In the Java API, it is represented by com.whitestein.lsps.lang.exec.BinaryHolder.

Binary literals are not supported.

To define the type:

Binary

3.4.2 String

A String holds a sequence of Unicode characters. The data type is implemented by the java.lang.String
class.

To define the type:

String

To create an instance:

"Sequence of Unicode characters"

A String can contain special characters defined using their ASCII codes. For example, you can use the ASCII tab
code (#9) to have a tab in your String, the line feed character (#10) to insert the end of a line and make a multi-line
String, etc., for example:

"This" + #10 + "is" + #10 + "a" + #10 + "multiline" + #10 + "string with "+
"multiple" + #10 + " new lines " + #10 + " which represent " + #10 + "line breaks."

To escape characters, use the double-quote (") character:

"This is all one string: ""Welcome to String escaping!"""

To annotate a string that is not to be localized, add the hashtag # sign in front of the string.

#"This is a string value which will not be localized."

The hashtag # sign signalizes that the String is to remain unlocalized and that this was the intention of the developer.
Such Strings are excluded from checks of unlocalized Strings.

To create a local variable:

def String s := "My String"

../designer/Localization.html#nonlocalized

3.4 Simple Data Types 7

3.4.3 Boolean

Boolean objects hold the values null, true or false. It is implemented by the java.lang.Boolean class.

To define the type:

Boolean

To create an instance:

true

To create a local variable:

def Boolean s := true

The expression def Boolean boolVar := true declares and defines a local variable of type.

3.4.4 Integer

Integer objects hold natural numbers and their negatives. The data type is a subtype of the Decimal type. It is
represented by com.whitestein.lsps.lang.Decimal.

Note that the underlying Java type is BigDecimal; hence no relevant maximum limit applies to the value.

To define the type:

Integer

To create a literal:

-100;
//as hexadecimal:
0XFF // == 255

To create a local variable:

def Integer i := 42

8 Data Types

3.4.5 Decimal

Decimal objects hold numerical fixed-point values. It is represented by com.whitestein.lsps.lang.Decimal.

Note: A Decimal type is internally represented by two integer values: an unscaled value and a scale.
The value is hence given as <UNSCALED_VALUE>∗10∗∗<SCALE_VALUE>. The integer scale
defines where the decimal point is placed on the unscaled value. The scale is a 32-bit integer. If zero
or positive, the scale is the number of digits to the right of the decimal point. If negative, the unscaled
value is multiplied by ten to the power of the negation of the scale. Decimal values are, for example,
2e+12, -1.2342e0, 1.0.

When assigning a value of type Decimal, you need to define the scale and rounding mode. The following rounding
modes can be used on decimals:

• UP: rounds away from zero

• DOWN: rounds toward zero

• CEILING: rounds toward positive infinity

• FLOOR: rounds toward negative infinity

• HALF_UP: rounds toward the nearest neighbor unless both neighbors are equidistant, in which case it rounds
up

• HALF_DOWN: rounds toward nearest neighbor unless both neighbors are equidistant, in which case it rounds
down

• HALF_EVEN: rounds toward the nearest neighbor unless both neighbors are equidistant, in which case, it
rounds toward the even neighbor

• UNNECESSARY: asserts that no rounding is necessary

The rounding mode is defined for decimal variables or for a record field of type Decimal.

To define the type:

Decimal

To define a Decimal type with Scale 100 and Rounding Model UP:

Decimal(100, UP)

To create an instance:

-10.0;
7E-3 //0.007
6.63E+34

To create a local variable:

def Decimal intVar := 100

Important: Decimal values are normalized if they contain 0 digits after the decimal point: decimal value
1.0 and integer value 1 have the same numerical value and therefore 1.0 == 1.

3.5 Complex Data Types 9

3.4.6 Date

The Date object holds a specific time. It represents the java.util.Date class.

Important: Only dates since the introduction of the Gregorian calendar, that is, the year 1582 are
supported: for Dates that occurred before, a shift in days can occur rendering the date incorrect.

To define the type:

Date

To create an instance:

d’yyyy-MM-dd HH:mm:ss.SSS’

To create a local variable:

def Date myDate := d’2017-12-24 20:00:00.000’

When working with dates, consider using the date functions available in the Standard
Library.

3.4.7 Local Date

The LocalDate object holds a date without the timezone. It represents the java.time.Local.Date class.

To define the type:

LocalDate

To create an instance:

ld’yyyy-MM-dd’

To create a local variable:

def LocalDate myDate := ld’2017-12-24’
def LocalDate anotherLocalDate := ld’2017-02-24’
def LocalDate yetAnotherLocalDate := ld’2017-02-04’

When working with local dates, consider using the local date functions available in the Standard Library.

3.5 Complex Data Types

Complex data types are composite data types based on other data types.

../stdlib/re_modulecore_functions.html#x69b3c3c6-6bb9-4499-990a-c148a84f5dfb
../stdlib/re_modulecore_functions.html#x69b3c3c6-6bb9-4499-990a-c148a84f5dfb

10 Data Types

3.5.1 Collections

A Collection is a groupings of items of a particular data type. It is represented by com.whitestein.lsps.lang.exec.←↩

CollectionHolder.

Collections are ordered and immutable: once a collection is created, it cannot be changed, while you can change
individual collection items. Each item of the collection represents an expression

To access an element of a Collection, you need to specify the position of the element in the List. Note that the first
element of a List is on position zero. For example, [10,20,30][1] returns 20 as position 0 of this list points to
the value 10, the first element of the list.

Hierarchy of collections follows the hierarchy of their elements: List<TA> is a subtype of List<TB>, if TA is a
subtype of TB. Set<TA> is a subtype of Set<TB>, if TA is a subtype of TB.

To define the type:

Collection<T>

3.5.1.1 List

A List represents an ordered collection of items of a type with possible duplicate values. It is represented by the
com.whitestein.lsps.lang.exec.ListHolder class.

To define the type:

List<T>

To create an instance:

["a", "b", "c", "d"]

List of lists

[["a", "b"], ["b", "c", "a"]]

To access an item in a List: Specify the position of the item in the List starting from 0: For example,
[10,20,30][1] returns 20 as position 0 points to the value 10, the first element.

Unlike on Sets, accessing list items is performance-wise efficient.

3.5.1.1.1 Creating a List of Integers with the Range Operator

To create a List of Integers, you can use the .. operator, the range operator:

1..5
//is equivalent to [1, 2, 3, 4, 5]

3..1
//is equivalent to [3, 2, 1]

Note that toString(x..y) returns "x..y".

3.5 Complex Data Types 11

3.5.1.2 Set

A Set represents an ordered collection of items of a type with no duplicate values. It is represented by the com.←↩

whitestein.lsps.lang.exec.SetHolder class.

To define the type:

Set<T>

To create an instance:

//Set<Integer>:
{1,2,3};

To access an item in a Set: Specify the position of the item in the Set starting from 0: For example,
{10,20,30}[1] returns 20 as position 0 points to the value 10, the first item.

Unlike in Lists, accessing items is performance-wise inefficient.

3.5.2 Map

Maps hold keys with their values and are immutable: once a map is created, it cannot be changed. You can change
its key-value pairs, however, the map itself cannot be modified.

It is represented by com.whitestein.lsps.lang.exec.MapHolder.

To define the type:

//type map with the K type of its keys and the V type of its values:
Map<K, V>

Note that hierarchy of maps follows the hierarchy of its key and value types: Map<KA, VA> is a subtype of Map<KB,
VB>, if KA is a subtype of KB and VA is a subtype of VB.

To create an instance:

[1->"a", 2->"b"]

To initialize an empty map, use the empty-map operator [->]:

def Map<Object, Object> myEmptyMap := [->];

To get a value of a key, specify the key for the appropriate value in square brackets, for example, ["first←↩

Key"->"a", "anotherKey"->"b"]["anotherKey"] returns the string "b".

12 Data Types

3.5.3 Reference

A Reference holds a reference expression that resolves to a variable or a record field (slot), not their value.

A Reference is conceptually similar to pointers in other languages. However, a Reference points to a variable or a
record field, not to memory slot.

• A Reference to a variable resolves to the variable object

• A Reference to a record field resolves to the record instance and the association path.

The data type is represented by com.whitestein.lsps.lang.exec.ReferenceHolder.

To define the Reference type:

Reference<T>

To create a Reference instance, use the & reference operator:

&<TARGET>

∗∗To get the value in the referenced slot, use the dereference operator.

Example Use of Reference

//creates new Patient record instance with diagnosis "flu":
def Patient r := new Patient(diagnosis -> "flu");
~
//creates the local variable status that holds the reference to the diagnosis field of the Patient record instance:
def Reference<String> status := &(r.diagnosis);
~
//function sets the status to cured on the patient:
setStatusToCured(&r.status);
~
//implementation of the setStatusToCured() function:
//def Reference<String> status:= statusReference;
//*status:="cured";

3.5.4 Closure

A closure is an anonymous function that can declare and make use of local variables in its own namespace and
use variables from its parent expression context as opposed to lambdas. It is represented by com.whitestein.lsps.←↩

lang.exec.ClosureHolder.

To define the type:

//Syntax: { <INPUT_TYPE_1>, <INPUT_TYPE_2> : <OUTPUT_TYPE> }
{ String : Integer}
//Closure that that has no parameters and returns an Object:
{ : Object}

def { String : String } myClosureVar := { s:String-> callingFunction(s) }
myClosureVar("my string")

3.5 Complex Data Types 13

def { String : String } myClosureVar := { s:String-> callingFunction(s) }
myClosureVar("my string")

Subtyping in closures is governed by their parameters and return type: Closure A is a subtype of closure B when:

• the return type of closure A is a subtype of the return type of closure B

• and parameter types of closure B are subtypes of parameter types of closure A.

{ S1,S2,... : S } is subtype of { T1, T2,... : T } when T1 is subtype of S1, T2 is subtype of S2, etc. and S is subtype
of T.

To create an instance:

//Syntax: { <PARAMETERS> -> <CLOSURE_BODY> }
{s:String -> length(s)}

Parameter types can be omitted:

{s -> length(s)}

The system attempts to infer the type of closure arguments and its return value. Note that the types might be
resolved incorrectly. To prevent such an event, consider defining the argument type explicitly as in the example.

To evaluate a closure use the parentheses () operator with the closure arguments:

def {Integer:String} closureVar := {x:Integer -> toString(x)};
def String closureResult := closureVar(3);

Important: It is recommended to always explicitly define the type of the closure input arguments, in
the example, we explicitly define that x is an Integer in x:Integer.

3.5.5 User-Defined Record

A user-define Record is the subtype of the Record type. It serves to create custom structured data types. A Record
can define:

• relationships with another Records

• methods declared in a dedicated methods file

It is not possible to declare a Record type in the Expression Language: Records are modeled in the data-type
editor of the Living Systems® Designer. However, you can create instances of Records. When you pass a
Record, for example, as a function argument, it is passed by reference.

It is represented by com.whitestein.lsps.lang.exec.RecordHolder.

To create an instance:

new <RECORD>(<NAME_OF_FIELD> -> <FIELD_VALUE>, <NAME_OF_FIELD> -> <VALUE>, ...))

For example:

new Book(genre -> Genre.FICTION, title -> "Catch 22", author -> new Author(name -> "Heller, Joseph"))

Use the dot operator to access Record Fields or Properties (Fields of related Records using the Relationship name),
and methods.

Example: def declares a new variable of the MyRecord type. new creates a new MyRecord instance, which is
assigned to the variable (the instance is the proper memory space with the record) . Variable r points to the My←↩

Record instance and it is returned by the expression.

new <RECORD_NAME>(<PROPERTY> -> <VALUE>)

../modeling-language/datatypemodel.html#datarelationships
../designer/DataTypeModel.html
../designer/DataTypeModel.html

14 Data Types

3.5.5.1 Methods

A method is a piece of code similar to function but defined for a specific Record that performs an action on the
Record instance. The action is defined as the method body: Method body can use Record's fields, methods, global
variables and global functions. If the Record has a supertype, also the public methods of the supertype Record are
accessible and can be overridden by the subtype method. To call the methods of the supertype Record, use the
super keyword.

Important: While you can override the toString() method of Records so that when you call the toString()
method on your Record, the system will use your method; however, it is not possible to override the
equals() and hashcode() methods.

Methods are declared in method definition files with every Record having its own dedicated
methods file.

Methods define their visibility:

• private: accessible only for the Record and its methods (define methods to access from outside)

• protected: accessible only from within the data type hierarchy (can be used by any subtype)

• public: accessible from anywhere

Methods support overloading, that is, a Record can define multiple methods with the same name as long as they
have different arguments.

3.5.5.1.1 Declaring Methods

When declaring methods and constructors, you can reference the current Record object with the 'this' keyword

Methods of a Record are declared and defined for the given Record in the method definition:

<RECORD_NAME> {

<METHOD_DEFINITIONS>

}

Individual methods are declared with the following syntax:

/** <description> */
<visibility> <flag> <returnType> <name> (<arguments>){

<methodImplementation>
}

Note: To indicate that a method does not return any value, set the return type to void. It is not
recommended to use Null.

Example method:

public String getName(){
this.title;

}

When declaring methods, you can use the this keyword to reference the current Record instance:

this.callingRecordMethod();

Note that calling method fails with an exception if the object is null (safe-dot operator equivalent is not available).

../designer/DataTypeModel.html#definingmethods

3.5 Complex Data Types 15

3.5.5.1.2 Accessing Methods of Super Records

To access methods of Record's supertype, use the super keyword:

//supertype default constructor:
super();

super.methodFromParent();

You can override the inherited methods.

3.5.5.1.3 Extension Methods

Extension methods are special function types that are defined for a particular data type. Unlike common methods,
they enable you to add methods to existing types, and that, including types from Standard Library, so you do not
need to create a new type for your method.

Extension methods are declared the type they are defined for in a function definition file, which cannot be created
with the Expression Language. They can be called either like methods or functions.

Important: Extension methods are resolved as functions (not as methods) so that the extension
method in the lowest context is used.

To declare an extension method on an existing Type, use the following syntax:

@ExtensionMethod
<visiblity> <returnType> <nameOfExtensionMethod>(<extendedType><inputParams>) {

<implementation>
}

Example implementation:

@ExtensionMethod
private String extensionMethodOfString(Integer i) {

"String value returned by the extensionMethodOfString() over Integer " + i
}

Example calls of an extension method:

EntityGrid.removeAllColumns();
//or
removeAllColumns(EntityGrid);

3.5.5.1.4 Calling Methods

Record types can define methods that can be called on their Record instances or their Record, in the case of static
methods:

<record_instance>.<method>(<parameters>)

To operate directly over the return values of methods, you can chain the methods:

<recordInstance>.<method1>.<method2>;

Note: Methods cannot use named parameters as its arguments: calls like <record_←↩

instance>.<method>(<parameter> -> <value>) is not supported).

16 Data Types

3.5.5.1.5 Declaring Static Methods

You can declare a method as a static method: static methods are methods that belong to the Record, not a Record
instance and as such are shared between all instances of the Record.

Important: Static methods can be declared only on Records. It is not possible to create static methods
on Interfaces.

To declare a method as static, you need to prepone the method with the keyword static.

3.5.5.1.6 Abstract Records and Methods

If a Record is abstract, it cannot be instantiated, but it can be used as a super Record. An abstract Record
can define abstract methods: abstract methods do not contain any implementation but any child Records must
implement abstract methods of their super Records.

Abstract Records and methods serve to ensure that their child Records inherit the Fields and methods: the child
Record inherits the Fields and must implement the abstract methods of the abstract Record.

When depicted in Diagrams, names of abstract Records and Methods are in italics.

An abstract method is declared as

public abstract Integer getBusinessData();

Note: Records are marked as abstract using the abstract flag, which is a Modeling Language feature:
it is not possible to mark a Record as abstract only using the Expression Language.

3.5.5.2 Constructors

Constructors are Record methods that create and return an instance of the Record.

3.5.5.2.1 Constructor Availability

• If you do not declare a constructor, the following constructors are available:

– If no default constructor is available, the field constructor is available:

new Record(property1 -> Value1, property2 -> value2, ...);
//field constructor with no arguments:
new Record();

Note that you can assign a property value only to the visible properties (properties that are public or
protected if visible from the given location).

– If a super Record declares a non-parametric constructor and it can be reached from the child records
using the super() constructor, you can use the default constructor:

new Record();

• Once you declare a constructor on your Record, the field constructor and the default constructor are no longer
available.

3.5 Complex Data Types 17

3.5.5.2.2 Declaring Constructors

You can declare a constructor in method declaration using following the syntax:

public <YourRecordName> (<argument1_type> <argument_name>, <argument2> <argument_name>, ...) {
<ConstructorBody>
}

The body of constructor is governed by the same rules as a method bodies.

Parametric constructor example:

Book {
public Book(Integer isbn){

super();
//sets Field:
this.isbn := isbn;

}
}

To access fields of a Record, use the access operator .:

book.title

Note that the dot operator . fails with an exception if the <EXPRESSION> with the access operator is null. Use
the safe-dot operator to prevent the exception.

When accessing a field or record that is of type Reference, the property is automatically dereferenced. Therefore
the expression (∗ref).fieldName and ref.fieldName are identical.

3.5.6 Property Path

Property Path holds a route from a Record to a Record Field, for example,Employee.name.

You can use Relationships to define a path to a Field of another Record, such as, Employee.address.city
where address is the name of the Relationship to another Record, for example, EmployeeAddress.

To define the type:

PropertyPath

To create instances :

• to a Field via one or multiple relationships:

<Record>.<relationship>.<field>

MyRecord.myRecordsNavigableRelationship.fieldOfARelatedRecord

• to a Field on one Record:

<Record>.<field>

MyRecord.myRecordField

Note: To prevent the system from raising an exception when accessing a field that is null, you can
use the safe.dot ?. operator. The operation then returns the value null if the reference expression
is null (refer to safe-dot operator.

When accessing a Field or Record that is of type Reference, the property is automatically dereferenced. Hence the
expression (∗ref).fieldName and ref.fieldName are identical.

18 Data Types

3.5.7 Property

The Property data type holds the type of a Field in a user-defined Record.

Note: Property is a special type of property path (Property Path): use PropertyPath type instead if
possible.

Example

def Property authorNameField := Author.firstName;

3.5.8 Type

The Type data type holds data types, for example, a Type can hold the value String data type, a particular Map data
type, a Record data type, etc. It is represented by com.whitestein.lsps.lang.type.Type.

The Type data type can be used to check if object are of a particular data type. The output can be then further used
when Casting the object.

To define the type:

Type<T>

To create an instance:

//type is a keyword:
type(<TYPE>)

Example Usage

switch typeOf(person)
case type(NaturalPerson) -> getFullName(person as NaturalPerson)
case type(LegalPerson) -> getFullName(person as LegalPerson)
case type(PersonGroup) -> getFullName(person as PersonGroup)
default -> person.code + #" <Unknown type>"

end

3.5.9 Enumeration

An Enumeration is a data type that holds literals. Each literal is of the enumeration type. You cannot create an
Enumeration type in the Expression Language directly: It is modeled as a special Record type.

To define the type:

<ENUMERATION>

To create an instance:

<enumeration_name>.<literal_name>

Example:

//Weekday is an enumeration with values MONDAY, TUESDAY, etc.
def Weekday wd := Weekday.WEDNESDAY;

You can compare enumeration literals with the comparison operators ==, !=, <, >, <=, >= for enumerations of the
same enumeration type. Enumeration literals are arranged as a list of values; hence the comparison is based on
comparing their indexes: the order depends on the order of the literal as modeled in the Enumeration.

In LSPS Application, enumeration is represented by com.whitestein.lsps.lang.exec.Enumeration java class.

../modeling-language/datatypemodel.html#enumerations

3.5 Complex Data Types 19

3.5.10 Null

The Null data type signalizes an unspecified value: its only value is null.

The data type is the subtype of every other data type, so that any object can take the null value.

To define the type:

Null

20 Data Types

Chapter 4

Operators

Operators are symbols that cause a particular action, for example, comparison of values, summing up, assignment,
etc.

4.1 Assignment Operator

To assign a value to use the assignment operator :=:

//declaring local variable x:
def Integer x
//assign value 1 to x:
x := 1

4.2 Arithmetic Operators

Arithmetic operators are used on Integer and Decimal values similarly to their use in algebra.

Operator Description Example Result Note
+ addition 2 + 2 4
- subtraction 3 - 1 2
++ increment by 1 intVar++ or ++intVar postfix: returns value; then incre-

ments by one and assigns it to the
referenced object (2++); prefix: in-
crements value by 1 and reassigns it
to the referenced object

-- decrements by 1 intVar++ or ++intVar postfix: returns value; then decre-
ments by one and assigns it to
the referenced object (2++); prefix:
decrements value by 1 and reassigns
it to the referenced object

∗ multiplication 3 ∗ 3 9

/ division 9 / 3 3
% modulo 10 % 3 1
∗∗ exponentiation 3 ∗∗ 3 27 Since expressions are evaluated pri-

marily in the left-to-right manner un-
less precedence or association rules
take over, the expression 2∗∗3∗∗4 is
evaluated as 2∧3∧4∧∧; the exponent
follows the ∗∗ operator

22 Operators

4.3 Compound-Assignment Operators

You can use the following compound-assignment operators:

Operator Description Example Equivalent

+= assigns the result of the addition x += y x := x + y

-= assigns the result of the subtraction x -= y x := x - y

∗= assigns the result of the multiplication x ∗= y x := x ∗ y

/= assigns the result of the division x /= y x := x / y

%= assigns the remainder of the division x %= y x := x % y

4.4 Logical Operators

Logical operators are used to combine multiple expressions that each return a boolean value. Combination of
expressions with logical operators return a single boolean value.

Operators and their return values

and, && (conjunction) true if both operands are true; otherwise false

or, || (inclusive disjunction) true when at least one of the operands is true; otherwise false

xor, exclusive disjunction true when the operands value is not identical, that is one operand is true and the
other operand is false; otherwise false

not or ! (negation) true if the operand is false; false if the operand is true (unary operator)

Truth Table

Operand A Operand B A and B A or B A xor B not A

true true true true false false
true false false true true false
false true false true true true
false false false false false true

Since logical expressions are evaluated from left to right, the short-circuit evaluation is applied on and and or
expressions:

• for and expressions:<false> and <not_evaluated> evaluates to false

• for or expression <true> or <not_evaluated> evaluates to false

4.5 Comparison Operators

Comparison operators serve to compare two values. Comparing returns a boolean value.

To compare two values, you can use the following operators:

4.6 Concatenation 23

• == (equal) and != (not equal, alternatively noted as <>) check if the values of any data type are equal.

def String varA:="value"
def String varB:="value"
varA==varB
//returns true

Note: When comparing records, it is the object identity that is compared, not the record value.
Analogously, on shared records, the record IDs are compared. However, on non-shared records,
you can define fields or relationships so that the values of these are used when comparing records
(refer to the Record Fields in the GO-BPMN Modeling Language Guide).

• instanceof checks if the object is of a particular type.

def Integer int := 100;
int instanceof Decimal; //returns true

def Object obj := null;
obj instanceof String; // returns false

For a null argument, the operator returns false.

Note: The core::isInstance() returns true for null arguments.

• < (lesser), > (greater), <= (lesser or equal), and >= (greater or equal) check if values of decimals, integers,
and strings are lesser, lesser or equal, greater, or greater or equal and returns true or false.

When comparing Strings, they are compared lexicographically as per Java lexicographic ordering of strings,
for example, "Čapek" > "Hemingway" and "Čapek" > "Asimov" are true.

• like searches for an occurrence of a pattern in a string

The operator supports the wildcards ? for one character and ∗ for one or multiple characters

"matching exactly THIS word" like "* ??????? THIS *"

• <=> (the spaceship operator): checks if values are lesser, equal, or greater and returns -1 if the left operand
is lesser than the right operand, 0 if the left operand and right operand are equal, and 1 if the left operand is
greater than the right operand.

Applicable to the String, Decimal, Integers, and Date types (Date is a complex data type defined in the
Standard Library)

person1.name <=> person2.name

4.6 Concatenation

To concatenate two Strings, use the + concatenation operator.

varStringA+"String literal"

The String concatenation operator + can concatenate also a String and any subtype of the Object type: the Object
type is converted to the appropriate String value and concatenated with the String; for example, a Date value is
converted to a human readable date representation when concatenated with a string. Note that the String object
must come first in such expressions.

String concatenation example If the first operands of the + operator is a string, the + operator is considered
automatically the operand of concatenation and the non-string operand is automatically converted to a string.

"Timestamp: " + date("2014-07-31", yyyy-MM-dd)
//The date() function uses the DateTimeFormat implementation of the joda library

(http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html) and returns a Date object;
//the function is evaluated as if wrapper in toString: toString(date("2014-07-31", yyyy-MM-dd))

Resulting string:

Timestamp: Thu Jul 31 00:00:00 CEST 2014

Note: If you want to keep a non-string operand before the string operand in concatenation, start your
expression with the empty String literal "", for example, "" + author.surname + ", " +
author.firstname.

../modeling-language/datatypemodel.html#recordfields

24 Operators

4.7 Reference and Dereference Operators

The reference operator & returns Reference to a variable or a property path from a variable in the context of
the variable. The dereference operator ∗ takes a Reference value and returns the value currently stored in the
referenced variable or property.

//instantiates record c1 with c1.name "Walter White":
def Partner c1 := new Partner(name -> "Walter White");
~
//reference variable ref with reference c1.name (current value "Walter White"):
def Reference<String> ref := &c1.name;
~
//variable x assigned dereferenced ref, that is "Walter White":
def String x := *ref;
~
//c1 assigned a new record instance with the name "Jesse Pinkman":
c1 := new Partner(name -> "Jesse Pinkman");
~
//new variable y assigned the dereferenced ref value (that resolves to "Jesse Pinkman"):
def String y := *ref;
~
//note that the value held by x remains "Walter White"

In the example, the variable part is c1 and the property part is .name. To acquire the value of a reference, use the
dereference operator ∗.

References hold the referenced expression and the associated context. In our example the referenced expression
is c1.name.

4.8 Inclusion Operator

The inclusion operator in checks if an element is in a set or list.

The check returns the String "1 is in mySet" if 1 is in mySet.

if 1 in mySet
then "1 is in mySet"

end

4.9 Namespace Operator

The module namespace operator (::) is used to refer to elements of other module namespaces.

Consider ModuleA with a variable var imported into ModuleB. You can access var from ModuleB as follows:

ModuleA::var

The mechanism of module import is described in the GO-BPMN Modeling Language Specification.

4.10 Selector Operator 25

4.10 Selector Operator

To access items in collections or maps, use the selector operator [] to specify the element to be returned:

on sets

name_of_set[element_position]

on lists

name_of_list[element_position]

Note that the first element of a List is on position zero. For example, [10,20,30][1] returns 20.

on maps

name_of_map[element_key]

4.11 Ternary Conditional

The ternary conditional operator ?: enables you to define a condition and two expressions. If the condition eval-
uates to true the first expression is returned. If the condition evaluates to false, the second expression is
returned.

With the operator you can write the expression

if <CONDITION> then <EXPRESSION_1> else <EXPRESSION_2> end

as

<CONDITION> ? <TRUE_EXPRESSION> : <FALSE_EXPRESSION>

4.12 Null-Coalescing Operator

The null-coalescing operator ?? is a more effective version of if <expression_1> != null then
<expression_2> with <expression_1> evaluated only once.

<expression_1> ?? <expression_2>;
//is equivalent to:
if <expression_1> != null then

<expression_1>
else

<expression_2>
end

Example:

def String title := getTitle() ?? "Default Title";

26 Operators

4.13 Access Operator

The dot operator . serves to access fields of a Record, possibly via relationships, and a record's methods.
Example:

<EXPRESSION>.<FIELD>

For example:

book.title

Example:

<EXPRESSION>.<METHOD>

For example:

book.getAuthors()

Note that the dot operator . fails with an exception if the <EXPRESSION> with the access operator is null.
When accessing fields, you can use the safe-dot operator to prevent the exception.

4.14 Safe-Dot Operator

To prevent the system from raising an exception when it attempts to access a record field of a record which is null,
use the safe-dot operator ?..

Similarly to the dot operator, the ?. operator serves to access Record Fields, possibly of related Records. Unlike
the dot operator, no exception is raised when the record is null. The expression simply returns null.

<expression>?.field

Example:

def Person person := null;
//returns null without an error:
person?.email;
//chaining the access requests:
person?.contact?.operator?.operatorCallCode
//accessing reference:
&person?.name

4.15 Cast Operator

To cast the value of an object to another type, use the as operator:

<objectName> as <newObjectType>

person as NaturalPerson

For further information, refer to Casting.

4.16 Evaluation Order 27

4.16 Evaluation Order

The order of expression evaluation at runtime is generally from left to right, that is, first the left-hand operand is
evaluated and only then the right-hand operand is evaluated.

The evaluation order can be influenced by the operator precedence. Mathematical operators, logical, and relational
operators follow their natural operator precedence:

1. unary before multiplicative before additive and

2. negation before relational before equality before exclusive disjunction before conjunction before disjunction.

Parentheses override operator precedence and the expression in parenthesis is evaluated as a whole.

Operator precedence order

1. :: (scope operator)

2. [] (selector), () (function/closure call), . (dot operator), ?. (safe dot operator)

3. +, -, & (reference), ∗ (dereference)

4. ?? (ifnull)

5. ∗ (multiplication), / (division), % (modulo), ∗∗ (exponentiation)

6. + (addition), - (subtraction)

7. <, >, <=, >=, <=>

8. instanceof

9. == (equal), != (not equal), <>, like, in (inclusion)

10. cast, as

11. not and ! (negation)

12. and and && (conjunction)

13. or and ||, xor (disjunctions)

14. ?: (ternary if)

15. := (assignment)

16. ; (chaining operator)

28 Operators

Chapter 5

Comments

Characters in code marked as comments are not interpreted on runtime and serve to provide information about the
code.

To comment out a single like use the // characters: anything following the // characters until the end of the line is
considered a comment.

uiCreateBook::createBook() //This is a comment.
//The book is defined as a shared record.

To comment out multiple lines, mark the start of the comment with the /∗ symbols and finish it with ∗/

/* Multiline
code
comment */

30 Comments

Chapter 6

Local Variables

Local variables are created as part of an expression or an expression block and cannot be accessed from outside
of it. However, from within an expression you can refer to any variable that exists in the scope of the expression and
its parent scopes.

def String upperVar := "1";
begin
def String lowerVar := "2";
upperVar := "3";

end;
//this is not correct:
//lowerVar := "4";

To create a local variable use the def keyword in an expression. Note that def only declares the variable:

def <VARIABLE_TYPE><VARIABLE_NAME>

Note: If you need to use whitespaces in a name, wrap the name in single quotes:

def Integer ’variable name with spaces’;
’variable name with spaces’ := 34;

However, mind that using whitespaces in names is strongly discouraged.

The variable value when declared is null, which is returned as its value.

To assign a value to a variable, use the assignment (:=) operator: such an expression returns the right-hand-side
value of the assignment.

def String varString := "This is my variable value."
//returns "This is my variable value."

You can set an expression variable as final (once initialized, final variables cannot have their value changed):

final String varString;

Note: In models, you can define also global and local variables. Global variables are accessible from
the entire Model; local variables within the given resource, such as, a process or form. Mind you
cannot create global or local variables in the Expression Language; these are created in dedicated
model resources.

../designer/Variables.html

32 Local Variables

Chapter 7

Controlling Flow

7.1 Branching

Branching serves to accommodate different reactions depending on a particular condition.

You can perform branching using the appropriate if construct or a switch. Note that the constructs represent an
expression block.

7.1.1 if-then-end

The if-then-end returns the value returned by the <expression> if the Boolean_expression is true and null if
the Boolean_expression is false.

if <boolean_expression> then
<expression>

end

Example

//sendInfo is a Boolean variable.
if sendInfo then

"Do send the newsletter."
end
//if sendInfo is false, the expression returns null (consider exception handling).

7.1.2 if-then-else-end

The if-then-else-end returns the value returned by <expression_1> if the Boolean_expression is true and
value returned by <expression_2> if the Boolean_expression is false.

if <boolean_expression> then
<expression_1>

else
<expression_2>

end

Example:

//passedTest is a Boolean variable.
if passedTest then

"Passed"
else

"Failed"
end

34 Controlling Flow

7.1.3 if-then-elsif-end

• If the boolean_expression_1 evaluates to false, boolean_expression_2 is checked.

• If boolean_expression_2 is true, expression_2 is evaluated, and the evaluation leaves the if con-
struct.

• If boolean_expression_2 is false, the next elsif expression is checked, etc. If none of the elsif Boolean
expression is true, expression_N is evaluated, and the evaluation leaves the if construct.

if <boolean_expression_1> then
<expression_1>
elsif <boolean_expression_2> then
<expression_2>

end

Example

//passedTest is a String variable.
if passedTest=="yes" then

"Passed"
elsif passedTest=="no" then
"Failed"

end

7.1.4 if-then-elsif-then-else-end

if <boolean_expression_1> then
<expression_1>
elsif <boolean_expression_2> then
<expression_2>

else
<else_expression>

end

Example:

//passedTest is a String variable.
if passedTest=="yes" then

"Passed"
elsif passedTest=="no" then
"Failed"

else
"Did not attend"

end

7.1.5 switch

The switch construct branches the execution flow based on condition value: it compares the argument expres-
sion against multiple possible values. If the value of the argument expression matches the value of the case, the
expression defined for that case is executed and the switch returns the value of the expression. Unlike in Java,
every case expression has an implicit break.

You can define a default expression that is executed if none of the cases matches is executed.

switch month
case "January" -> 1
case "February" -> 2
default -> "Not January nor February"

end

7.2 Looping 35

7.2 Looping

Looping serves to repeat the same or similar action.

Note that the looping constructs represent an expression block block.

7.2.1 for

The for loop, server to loop through a block of expressions, until a condition becomes true.

for(init; condition; update) do
expression

end

Example

def Integer i := 0;
for (i; i < 10; i++) do

debugLog({-> toString(i)}, 1000)
end

Important: Collecting results of foreach, for, and while in a collection so that you create a new
collection on each iteration as below, is inefficient and can cause performance issues (consider that
collections are immutable):

def Integer i := 0;
def Set<Integer> varSet := {};
for (i; i < 10; i++) do
//creates a new set with the i added and assigns it to varSet:
varSet := add(varSet, i);

end
//varSet will contain { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Use collect(), fold(), exist(), forAll(), etc. of the Standard Library instead. For
example:

collect(1..10, { x:Integer -> new Option(label -> "Option " + x, value -> "Value " + x) })
//instead of:
//def List<Option> options := [];
//foreach Integer x in 1..10 do
// options := add(options, new Option(label -> "Option " + x, value -> "Value " + x))
//end;
//options;

7.2.2 foreach

To iterate through items in a collection, use foreach:

foreach <type> <iterator_name> in <collection> do
<expression>

end

Example:

def Set<Person> persons := { ... };
~
foreach Person person in persons do

sendEmail("Important Notification", "", {} , {person.email}, {}, {}, "UTF-8");
end

../stdlib/re_modulecore_functions.html

36 Controlling Flow

7.2.3 while

To loop code while an expression is true, use the while construct:

while <boolean_expression> do
<expression>

end

7.2.4 break

In while, for, and foreach loops, you can use the break keyword to finish the looping immediately and continue with
the next expression.

def Integer i := 0;
for (i; i < 10; i++) do

if i == 3 then
break;

end
end

7.2.5 continue

In while, for, and foreach loops, you can skip the current loop with the continue keyword.

def Set<Person> persons := {};
~
foreach Person person in persons do

if isEmpty(person.email) then
continue;

end;
sendEmail("Important Notification", "", {} , {person.email}, {}, {}, "UTF-8");

end

Chapter 8

Exception Handling

On runtime, code can cause an error that halts the execution and potentially terminate the execution unexpectedly.
Typically, this can occur on user input, when the user input is unexpected (for example, while the code expects a
Decimal value and the user enters a value with letters). Exception handling enables you to deal with such situations
and handle the thrown exception gracefully.

To handle an exception, use the try-catch construct on the code.

Also, you can decide that a particular expression should produce an exception. To throw an exception, use the
error() function from the Standard Library.

8.1 Throwing Exceptions

The error() function throws an error with an error code. The error code is a String parameter of the construct.

error(<errorcode>)

Example:

error("InvalidISBNFormat")

If an error exception is not caught and handled, the execution terminates. The error can be caught and handled by
a try-catch block.

Important: Error throwing functions are part of the Standard Library. Refer to the Standard Library
Reference for further information.

38 Exception Handling

8.2 Catching Exceptions

To catch and handle error exceptions produced by throw or by null function parameters which must not be null
without interrupting the execution, use the try-catch statement block on the code which might cause an exception:

try <expression>
catch <error_code>, ... -> <handle_expression_1>;

handle_expression_2;
...

end

If the catch statement takes null, any error is caught.

Note: To get the error code and message of the error, use the getErrorCode() and getError←↩

Message() functions in the catch:

try
createModelInstance(

synchronous -> true,
model -> getModel("childProcess","1.0"),
properties-> ["Triggered by" -> thisModelInstance().id.toString()]

)
catch null, "error" -> log("Error: " + getErrorCode() + getErrorMessage(), ERROR_LEVEL)

end

Example:

try getCode()
catch "Invalid ISBN format", "Invalid ISSN format" -> "Code value is not valid."

end

Example: Catching any error code

try executeFunction()
catch null -> "Code value is not valid."

end

Note that the block returns an object, which you can cast as appropriate:

try val.toDecimal()
catch null -> "not decimal" as String

8.3 Built-in Errors 39

Error Description (occurrence circumstances)

8.3 Built-in Errors

The Expression Language makes use of the errors with the following error codes:

Error Description (occurrence circumstances)
AmbiguousNameError The provided name cannot be resolved to a unique entity.

ArithmeticError An operand in an arithmetic operation cannot be processed.

BinaryDataError Binary data cannot be retrieved (for example, from database).

DoesNotExistError The entity does not exist.

FormatError The format of an argument is incorrect (for example, on casting of a String).

IncompatibleTypeError The type of processed value is incorrect (typically on casting or assigning).

IncorrectPathname The string with the path in invalid.

MergeEvaluationError Evaluation context created by a View Model cannot be merged.

ModelInstantiationError Instantiation of a model failed.
ModelInterpretationError Model cannot be interpreted.

NoExternalRecordProvider The resource with the requested external record is not available.

NoSuchPropertyError The record property does not exist.

NullParameterError A mandatory parameter has the null value.

OutOfBoundsError The collection element does not exist.
OptimisticLockConflictException Saving changes to record instance failed since the underlying versioned

record instance was changed.

ReadOnlyAccessError The system attempted to write to a read-only object.

RecordNotFound The record instance does not exist.
ReferenceNotFound Dereferencing failure (Referenced value was not found.)

SendingError Error sending failed.

SendingSignalError Signal sending failed.

WrongSizeError∗ The size of a value is incorrect (for example, a String being cast to a map).

40 Exception Handling

Chapter 9

Functions

A function is a named closure: it has input parameters which are passed to the body of the function. The body
comprises one or multiple expressions and return a value, which is the return value of the function.

Functions are declared and defined in a function definition file.

Note: Designer comes with two function editors, the text function editor and the visual function editor,
which serve to create two different types of function definition files: When using the visual function
editor, the output is an XML file with the declarations and definitions. The text function editor allows you
to declare and define your functions as text. This section deals exclusively with the syntax of functions
when they are defined as text. For more information on how the functions are declared and defined in
Designer, refer to Functions in Designer guide.

To define a function use the following syntax:

/** <description> **/
<annotations>
<visibility> <returnType> <name> (<parameter1_type> <parameter1_name>, <parameter2_type>

<parameter_name2>){
<implementation>

}

Methods define their visibility:

• private: accessible only from within the Module

• public: accessible from the Module and from any importing Modules

Function parameters can be flagged as:

• mandatory using the ∗ symbol (unflagged parameters are optional)

• variadic using the ... after the parameter type, for example, String... name

To define the default value of a parameter, use the <PARAM_TYPE> <PARAM_NAME> = <DEFAULT_PA←↩

RAMETER_VALUE>. Note that to assign the default value, = is used.

public String getParameterValue(String param = "default value") {
param

}

../designer/Functions.html

42 Functions

9.1 Functions Implemented by a Java Method

When implementing a function as a Java method, use the native keyword followed by the java method path that im-
plements the function instead of the {<implementation>}, for example, native com.whitestein.←↩

lsps.example.myfunction;.

Note: The native implementation then receives the current context as its parameter.

Individual functions are declared and defined with the following syntax:

/** <description> **/
<annotations>
<visibility> <returnType> <name> (<parameter_type> <parameter_name>)
native <implementing_method>

9.2 Function Annotations

A function declaration can have the following annotations:

• @SideEffect: on validation, the info notification about that the called function has a side effect is suppressed
A function is considered to have side effects if one of the following is true:

– The function modifies a variable outside of the function scope.

– The function creates a shared record.

– The function modifies a record field.

– The function calls a function that causes a side effect.

• @Deprecated: on validation, a notification about that the called function is deprecated is displayed

• @Disabled: function is disabled (no calls can be performed)

• @Status: modeling status of the function as @Status (<STATUS_NAME>)

• @Meta: metadata of the function defined as @Meta(key1 -> value1, key2 -> value2, ...)

• @ExtensionMethod: extension methods of existing Records; the first parameter is the Record you are ex-
tending

9.3 Calling Functions

Function calls are calls to function definitions which are special kinds of closures defined in a function definition:
Function definitions are model elements which cannot be created directly in the Expression Language; however,
you can call functions and use their return value in your expressions.

A function call follows the syntax

<FUNCTION_NAME>(<COMMA_SEPARATED_ARGUMENTS>)

or alternatively

../designer/ModelingStatus.html

9.3 Calling Functions 43

<FUNCTION_NAME>(<PARAMETER_NAME_1> -> <ARGUMENT_1>, <PARAMETER_NAME_2> -> <ARGUMENT_2>)

The explicit definition of parameter names is useful if a parameter is not required and has a default value.

Example function call:

getModel("Delivery", 1.4)
//alternatively:
getModel(name -> "Delivery", version -> "1.4")

If a function uses type parameters, their types are inferred. However, you can define the types explicitly if
required:

<FUNCTION> | <COMMA_SEPARATED_TYPES_PARAMETER_TYPES> | (<ARGUMENTS>)

The list of types in <COMMA_SEPARATED_TYPES> is used in the same order as the type parameters are defined.
Note that you need to define the types for all type parameters.

A function call is resolved into the function based on the call arguments: overloading is supported.

Call to a Standard Library function with the types of type parameters:

//collect has the E and T type parameters:
//E will be handled as Employee and T as Decimal:
sum(collect|Employee, Decimal|(e, {e -> e.salary}))

../designer/Functions.html#DefiningFunctions

44 Functions

Chapter 10

Model Elements

Expressions can access named elements defined in the model, which cannot be defined directly in the Expression
Language.

Such model elements include the following:

• Modules represent a structuring unit similar to a package and contain all the resources with model elements.
A module can use resources of another module only if it imports the module–similarly to packages in Java.
The module importing mechanism is described in the GO-BPMN Modeling Language guide.

If you want to reference an element from another module, the name of the entity must be preceded by the
module name and the :: operator.

<MODULE_NAME>::<ELEMENT_NAME>

• Queries and form are declared and defined in their definition files and are called just like functions:

<QUERY_OR_FORM_NAME>(<PARAMETER_1>, <PARAMETER_2>)

Note that parameters can be themselves expressions that return the data type defined as the parameter type. If a
parameter is of the String type, the parameter can be an expression that results in a String object.

getName(getProcessName()+"#"+getId())

Note: Other elements are implemented as functions and are called in the same way. This includes
queries and forms.

• Variables from parent namespaces are defined in a variable definition file (global module variables), or
directly on the elements representing the parent namespace, for example, a sub-process, a form, etc.

Variables from parent namespaces are referred to by their name with no special notation.

• Records and their fields are defined in a data type definition file.

Records are referred to by their name with no special notation. To access record fields, use the dot operator:
<RECORD_NAME>.<RECORD_FIELD>

Note that Record properties, fields on related Records, are accessed in the same way.

• Constants are named values of the enumeration data type, or maps of these data types. After their value has
been initialized, it remains unchanged during the rest of the runtime. Initialization expressions of constants
can use other constants.

Constants cannot be defined in the Expression Language directly. To call a constant in an expression, use its
name, for example, "This is the current date format: " + DATE_FORMAT.

../modeling-language/encapsulation.html#moduleimport

46 Model Elements

Chapter 11

Reserved Words

The following words are reserved words intended for future use:

• final

• repeat

• until

• return

48 Reserved Words

	1 Expression Language
	2 Expressions
	2.1 Chaining Expressions
	2.2 Block
	2.3 Literals

	3 Data Types
	3.1 Casting
	3.2 Object
	3.3 void
	3.4 Simple Data Types
	3.4.1 Binary
	3.4.2 String
	3.4.3 Boolean
	3.4.4 Integer
	3.4.5 Decimal
	3.4.6 Date
	3.4.7 Local Date

	3.5 Complex Data Types
	3.5.1 Collections
	3.5.1.1 List
	3.5.1.2 Set

	3.5.2 Map
	3.5.3 Reference
	3.5.4 Closure
	3.5.5 User-Defined Record
	3.5.5.1 Methods
	3.5.5.2 Constructors

	3.5.6 Property Path
	3.5.7 Property
	3.5.8 Type
	3.5.9 Enumeration
	3.5.10 Null

	4 Operators
	4.1 Assignment Operator
	4.2 Arithmetic Operators
	4.3 Compound-Assignment Operators
	4.4 Logical Operators
	4.5 Comparison Operators
	4.6 Concatenation
	4.7 Reference and Dereference Operators
	4.8 Inclusion Operator
	4.9 Namespace Operator
	4.10 Selector Operator
	4.11 Ternary Conditional
	4.12 Null-Coalescing Operator
	4.13 Access Operator
	4.14 Safe-Dot Operator
	4.15 Cast Operator
	4.16 Evaluation Order

	5 Comments
	6 Local Variables
	7 Controlling Flow
	7.1 Branching
	7.1.1 if-then-end
	7.1.2 if-then-else-end
	7.1.3 if-then-elsif-end
	7.1.4 if-then-elsif-then-else-end
	7.1.5 switch

	7.2 Looping
	7.2.1 for
	7.2.2 foreach
	7.2.3 while
	7.2.4 break
	7.2.5 continue

	8 Exception Handling
	8.1 Throwing Exceptions
	8.2 Catching Exceptions
	8.3 Built-in Errors

	9 Functions
	9.1 Functions Implemented by a Java Method
	9.2 Function Annotations
	9.3 Calling Functions

	10 Model Elements
	11 Reserved Words

